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Originally designed for navigation, signals from Global Navigation Satellite Systems (GNSS)
are now being used for remote-sensing of Earth's ionosphere, atmosphe, and surfaces. Since
their earliest application, the carrier phase of these signals have lea a icted by cycle slips, which
manifest as rapid and discrete changes in the phase measurement biash@y can occur due to the
e ects of noise, multipath interference, receiver processingor a combination of all these factors.
In both navigation and remote-sensing contexts, GNSS signals are subjeto a variety of harsh
conditions, such as propagation through ionospheric and atmospheric structes, arrival from low
elevation angles, or re ection o Earth's surfaces. Under such conditiors, cycle slips become a major
error source for remote sensing and high accuracy navigation algorithms nghg on continuous phase
measurements, and therefore must be mitigated.

This work addresses the characterization and mitigation of GNSS carrier cgle slips that
occur under these harsh conditions. In particular, we examine the agins of cycle slips due to the
e ects of both noise and phase transitions, which are slip-inducing pase uctuations related to
signal multipath interference. We discuss how phase transitions a related to canonical fading,
which is where a signal exhibits a fade in amplitude coinciding wih a rapid half-cycle phase change.
Using phase screen simulations of ionosphere di raction, we are able tcharacterize the cycle slips
rate-of-occurrence during ionosphere scintillation. We also showow many slips can occur due to
phase transitions where the signal fading is shallow, which has impiations for algorithms that try
to make use the signal amplitude measurements when mitigating cyclslips. We then assess actual
phase transitions and cycle slips in real multi-frequency ionosplre scintillation data. We discuss
two di erent approaches to cycle slip mitigation that have been sucessful in the past, but which

fail to adequately address the slips in the ionosphere scintillatiordatasets.



i
Our assessment of cycle slips in real scintillation data motivates oudevelopment of a general
probabilistic model for assessing cycle slip occurrences given arbitrary set of GNSS carrier phase
measurements. In our model, we use Gaussian processes to represggnal phase components and
discuss tuning of the covariance parameters to deal with di erent Evels of uncertainty or variation in
these components. We also discuss the roles of thermal noise and noiseedo unmodeled errors such
as ionosphere di raction. We consider the model performance for estimting a single cycle slip under
a variety of hypothetical conditions, and show that generally we requie an extended window ( 16
seconds) of high-rate ( 20 Hz) measurements in order to reliably estimate cycle slip occuances.
However, as we show in our assessment and characterization of real cyclgccurrences, several
slips are prone to occur over such a window under harsh signal condtiins. Therefore, cycle slip
amplitude estimates for a given window of harsh signal carrier phase measements will be highly
interdependent. To address this, we develop a batch cycle slipatection and estimation method
that can reliably estimate cycle slips under harsh conditions. Our aproach makes use of a variety
of novel techniques including sparse estimation of slip occurrares and an adaptation of the search-
and-shrink algorithm traditionally used to nd the solutions of integer -least-squares problems. We
assess the algorithm performance on simulated and real datasets. We demdnade its e ectiveness
when applied during ionosphere scintillation, weak ocean re ectios, or radio occultations through
the lower troposphere, and we show that it can work with triple-, dual-, and single-frequency signal

measurements.
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Chapter 1

An Overview of GNSS Cycle Slips

1.1 Introduction

Cycle slips are discrete and rapid changes in a signal carrier phase measment bias. A
wide range of factors can contribute to the occurrence of cycle slipsiimeasurements from Global
Navigation Satellite Systems (GNSS), including signal blockage, low ignal-to-noise ratio, high
platform dynamics, and e ects of propagation through a turbulent ionosphere or troposphere.
In short, harsh signal propagation conditions create a ripe environment forcycle slips to aict
carrier phase measurements. When left uncorrected, cycle slipstroduce persistent biases into the
measurement model that is used for a wide range of GNSS applications. As dy it is important
to understand how they arise, how they behave, and how well we can itigate their impacts.

The problem of cycle slip mitigation can be stated as follows: given a setf carrier phase
measurements (t), determine whether a cycle slip has occurred and, if so, when diit occur and
what is its amplitude. Figure [L.1] illustrates two prototypical examples of GNSS phase measure-
ments containing cycle slips. In both panels, a cycle slip occurat about halfway through on the
L5 signal phase (red line) in the presence of a larger overall phase trdn(black dashed line) and
noise. The slip in the left panel occurs quickly relative to the \ariation in the trend, making it
easier to identify. On the other hand, the slip in the right panel does not happen as quickly and
is harder to identify. Its occurrence only becomes clear after comarison with measurements from
the L1 signal transmitted by the same satellite, since in this partiaular case we know both signals

should show similar phase trends.
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Figure 1.1: Shows two prototypical examples of cycle slip occurrensén GNSS phase measurements,
both taken from the 2013-10-05 Hong Kong dataset, which we introduce in Sectiofi.4. The left
panel shows a more easily identi able slip in the presence of noise dra background trend. The right
panel shows simultaneous phase measurements from two signals, withess-obvious slip occurring
on the L5 signal.

In general, our ability to visually identify these slips is dependent on the relationship between
the slip characteristics, noise amplitude, and our knowledge about te background trend of (t).
The presence of excessive noise or uncertain background trends can rk&ycle slip occurrences and
decrease the probability of their identi cation. The potential for mu Itiple consecutive cycle slips
exacerbates this issue. Some or all of these factors {i.e. large noise aiitypdle, uncertain background
trends, and consecutive slip occurrences { are present in GNSS msurements collected under the
conditions of multipath, weak signal power, strong atmospheric or ionosphric disturbances, and
highly dynamic receiver platforms. These harsh conditions make cyel slip mitigation di cult and
are the motivation for this dissertation. With such challenging data, it will sometimes be impossible
to correctly identify cycle slips with high con dence. Therefore, in order to enable the e ective use
of GNSS phase measurements under such conditions, it is important tonderstand not only how
to deal with cycle slips, but also what are the limits for how well they can be mitigated.

This dissertation includes six chapters. In the remainder of thischapter, we brie y discuss

the relevant history and background of GNSS and techniques that have baeapplied to the cycle
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slip problem. We also show motivating examples of cycle slips in theontext of di erent GNSS
remote sensing applications. In Chapter 2, we use simulations to assethe interplay between signal
di raction and noise when it comes to cycle slip occurrence. We alseharacterize the cumulative
error that cycle slips can cause in the case of di ractive ionosphere #ttillation. In Chapter 3,
we will take a closer look at cycle slip occurrence in real data containg deep signal fading and
ionosphere di raction and assess the e ectiveness of two di erent gcle slip mitigation techniques
under such conditions. The performance of these methods establish need for an improved al-
gorithm. Subsequently, in Chapter 4, we lay out a framework for cycle Bp estimation using an
arbitrary window multi-frequency phase measurements. We estalish parameters for describing
phase components smoothness, establish approaches for determiningase noise, and use these to
guantify the probabilities of cycle slip identi cation under a vari ety of signal conditions. Then, in
Chapter 5, we use these models to develop a technique for detectjrsparse slip occurrences in a
window of high-rate measurements and nding integer-least squaresstimates in high dimensions.
We demonstrate application of this framework to both simulated and real dat sets. In Chapter 6,

we provide a brief summary and discussion of the topics presentedh ithis dissertation.

1.2 Background
1.2.1 Origin of Cycle Slips
A received baseband GNSS signal after demodulation can be modeled as:
s(t) = A(t)exp(i () + (1) 1.1

where A is the signal amplitude, is its phase, and (t) is assumed to be circular complex-valued
noise. During tracking, a reference signal with phase ((t) is correlated against the baseband

signal to produce noisy observations of the received amplitude and retual phase:

s(t) = A(exp(i  (1)+ qt) (1.2)
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where (t) = (1) ref(t). The raw phase measurement can then be reconstructed by adding

the unwrapped phase residual to the reference phase:
"(6)= rer(t) +unwrap (\ - s(t)) (1.3)

In this process, there are generally three things that can cause cyelslips to arise. 1) If the
di erence between the reference phase and true phase change too atufrom epoch to epoch, i.e. the
receiver loses phase lock, then the residual measurement will no# ect their actual phase di erence
and cycle slips will occur until lock is reestablished. 2) If noie dominates the signal, the residual
phase measurements jump around and the unwrap operation will erroneougiintroduce cycle slips.
As an example, Figure[ 1.2 illustrates how cycle slips can arise due tooise during the unwrapping
process. 3) If the signal experiences interference due to mytath, the residual baseband signal s
can wrap around the complex origin. We call this phenomenon a phase transiin, and it introduces
a cycle slip when the complex signal is unwrapped.

The rst cause we mentioned, loss-of-lock, is one that we consider tbe due to receiver mal-
function. In other words, adjusting the PLL bandwidth or otherwise ensuring an adequate reference
phase model can avoid such slips. There is also extensive literatl concerning the second cause
of a noise-driven PLL (c.f. [67], [1]). Work in [37] considers ionospherseintillation-induced cycle
slips from this perspective, but does not speci cally di erentiate the impact of phase transitions.
In Chapter 2 and Chapter 3, we discuss phase transitions in more detail ah examine how the

interplay between phase transitions and noise a ects cycle slip arurrence.

1.2.2 Phase Measurement Model

So far we have introduced the origin of cycle slips, but their impatas a source of error is only
meaningful within the context of an actual phase measurement model. Irthis work, we consider
the following models for GNSS code phase and carrier phase observables

k() = G(t)+ kI (1) + By + ni(t) (1.4)

k(D) = ka k(= G1) k(O + Bt wz(t)+ k(1) (1.5)
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Figure 1.2: Hypothetical example of cycle slips occurring during phas unwrapping.

where

k denotes a quantity corresponding to thek™ signal with carrier frequency f,, and wave-

length

G is the non-dispersive phase component, including any geometric rangelock, and tropo-

spheric e ects, etc.
| is the rst-order ionosphere delay on the rst signal frequency

K= f12=fk2 de nes the proportionality of the ionosphere delay among the di erent signals
B k is a fractional bias term, including the e ects of hardware delays, ¢c.

Z is the term for the integer-valued bias in the phase measurement dui® integer ambiguity

and cycle slips

n and account for noise and unmodeled e ects, including multipath and saitillation-

induced uctuations



The G term can be broken down into its main components as:
G=r+c(tix trx)+ Diopo (1.6)
where
r is the transmitter-to-receiver antenna range
ti and t, are the transmitter and receiver clock errors
Dtopo is the tropospheric range delay

Additionally, the | term can be related to the underlying physical parameter of ionosphes total
electron content (TEC):

() 5TEC(Y) (1.7)

where

TEC measured in TEC units (1 TECu=1 10 electrons/meter?) is an integrated measure

of the ionosphere plasma content along the signal ray path
40:308 10'%m s?=TECu is a constant

This ionospheric term only accounts for the rst-order refractive ionosphere e ect, though higher-
order e ects are known to be comparatively small [38].

There are various e ects that contribute to the noise terms and n. In particular, the iono-
sphere is known for causing phase and amplitude disturbances wheigsals di ract through plasma
irregularities. This e ect is called ionosphere scintillation, and in addition to larger variations in
| it also causes increased measurement noise levels and carrier phagele slips. Figure[1.3 illus-
trates the process of ionosphere scintillation. A similar phenomenomccurs when occulting signals
di ract through irregularities in the lower troposphere, which is k nown as tropospheric scintillation.
More generally, any form of multipath or signal interference will lead to increased code and carrier
phase noise levels. Additionally, there are the e ects due to thermal noise, which will be especially

important for signals with very low C =Ng or signals experiencing amplitude fading.



ionosphere
irregularities

Figure 1.3: lllustrates the process of ionosphere scintillation, in wich irregular structures in the
ionosphere plasma density induce uctuations received GNSS signals

When it comes to cycle slip mitigation, it is important to understand how the variation in
these components compares to potential changes in the integer-bias due cycle slips. Table[1.1
lists the size and variation of the di erent phase components one might se in measurements from a
stationary receiver on the ground. The largest and most highly varying compnents are the satellite-
receiver ranger, receiver clock error t , and refractive ionosphere e ectl . Any e ective approach
to cycle slip mitigation should make some e ort to model and estimate these phase components.
The troposphere variation is smaller or less variable, and so it is usuall not as critical to model.
Also note that the code phase noise is generally 1-2 orders of magnitude larger than the carrier
phase noise k. This has important implications with regards to the ine ectiveness of code phase
observables when it comes to detecting or estimating cycle slipsithh small amplitudes. Note that
multipath or di raction e ects will lead to carrier phase errors signi cantly larger than the typical

values listed in the table. Overall, this model will be su cient for discussing previous cycle slip



range variation
r 20,000 - 26,000 km  0-4000 m/s
Ctr 1 2m 0-300 m/s
| 1-50 m 0-0.8 m/min
Dtropo 2.5-25
Ny 0.05-0.5m @ 1 Hz
K Amm @ 1 Hz

Table 1.1: Approximate range and variation in the components of L-band measuremnts for a
typical stationary ground receiver.

mitigation techniques in this chapter as well as for introducing our avn methods in Chapter 4.

1.2.3 Phase Combinations for Cycle Slip Mitigation

There is extensive literature on cycle slip mitigation for GNSS signaé, documenting a pro-
gression of techniques since the launch of the Global Positioning Syst in the 1980s. The earliest
algorithms developed to work with single or dual-frequency GPS L1 and L2 ignals all looked for
change outliers in speci ¢ combinations of measurements. For instan¢g32] applied a Kalman lter
to the so-called geometry-free carrier phase combination and agged outlis in its variation as cycle
slips to be xed. The work in [/] extended this approach to use both cde-minus-carrier and the
geometry-free carrier combinations. Both authors acknowledged how an aste ionosphere and/or
receiver motion and clock dynamics associated with large measurementictuations can present
challenges when detecting outliers in phase time series. As suclnear combinations of measure-
ments that can isolate or remove these signal components have become a gaon thread in much of
the literature on cycle slip mitigation. Their use is also motivated by practical and computational
concerns in various other GNSS applications and processing steps, Inding standard positioning
and ambiguity resolution [60]. We use linear combinations of phase observains throughout this
work in order to demonstrate the e ect of cycle slips in real data, to explain previous mitigation
approaches, and to assess improvement in mitigation outcomes.

For K signals at di erent carrier frequencies, an arbitrary linear combination of code and



carrier phase measurements can be expressed as:
X

Y = C, ktC, « (1.8)
k

where ¢, and ¢ , are the linear combination coe cients for code phase and carrier phase &-

spectively. Also note that if the noise terms in Equation[1.4 and Equatbn are described by

covariancesQ and Q , then the variance of the resulting combination is:
2=¢"Qc +c'Q ¢ (1.9)

wherecp and ¢, are the coe cient vectors for code and carrier phase measurements.

Most often, linear combinations are chosen such that they remove contbiutions from the
non-dispersive e ects (modeled byG) and/or the refractive ionosphere e ect (modeled by | ) in
the resulting combination. These are referred to as geometry-freeGF) and ionosphere-free (IF)

combinations, respectively, and their coe cients satisfy:

X
c,+c,=0 GF (1.10)
k
X
kC kC = 0 IF (2.11)
k
1.23.1 Dual-Frequency Combinations

Among the various geometry-free and ionosphere-free combinations, theudl-frequency com-
binations using only code phase or only carrier phase have possibly theidest application. For the
rst two decades of GNSS, satellites in the GPS and GLONASS constellatioa only transmitted sig-
nals in the L1 and L2 frequency bands, which are centered at 1575.42 MHz (L1) and 1250 MHz
(L2) for GPS speci cally. The L1/L2 dual-frequency ionosphere-free comlination is widely used
when correcting for the ionosphere e ect during positioning [27]. Manwhile, the dual-frequency

geometry-free combination is used for measuring ionosphere TEC [68]. Wexpress the GF and IF
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combinations (applied to either code or carrier phase) as:

GFj;k = (1.12)

|
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The dual-frequency carrier phase GF combination has been widely ap@d for cycle slip
detection and estimation (c.f. [6], [8], [50]). This is because the nonlispersive phase components
in G are often the largest and most uncertain, and so their presence makes dg slip estimation
more di cult. As an example, we consider the dual-frequency phase masurements in the top panel
of Figure[1.4. The data was recorded at 30-second intervals by a receiverdated in Brazil that is
part of the International GNSS Service (IGS) network. We have subtraced o the largest phase
variations, which are due to the satellite-receiver range, so that weean more easily see the e ect of
cycle slips and other phase variations that are present in the data. In tlis case, the cycle slips arise
due to the low satellite elevation (indicated by the dashed line inthe third panel) which can often
cause excessive noise, multipath, and loss-of-lock when below1l5 20 . These slips are notably
di erent from the earlier examples shown in Figure[1.1; they are largerand e ectively instantaneous
due to the low sampling rate. Even still, they are somewhat di cult to discern in the top panel
due to residual phase variations from the receiver oscillator, tropospére, and refractive ionosphere
e ects. Rather, they are more easily identi ed in the geometry-free phase combination shown in
the second panel, which still contains the ionosphere variation but isoverall much smoother due
to being rid of the non-dispersive components. The noisier GF codeneasurement combination is
also displayed to indicate the approximate GF phase trend without gcle slips.

When the ionosphere variation is relatively smooth, as is the case for ouexample in Figure
[1.4, the GF carrier phase combination is clearly a good option for detectig cycle slips. However,
this combination alone does not contain enough information to estimate the amlitude of cycle slips
on the two di erent carriers. If we want to estimate cycle slip amplitudes using phase combinations,

we need another independent measurement combination that is also eaive for observing cycle
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Figure 1.4. Examples of detrended carrier phase, code and carrier GF cdmmations, and the HWM

combination in 30-second measurements for a receiver located in BraziCycle slips occur due to
e ects caused by the low satellite elevation, indicated in the daslked line in the third panel. This

data was obtained from the CDDIS (Crustal Dynamics Data Information System) website [55].
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slips. We consider the widelane and narrowlane combinations, which argiven as:

oot Tk fi i fx ok

Wi = Sp—— o 5, (1.14)
o f itk fi i+fk «

Nbik = T ro T (1.13)

Their names stem from how the di erence or summation of phase (in cyas) can be interpreted
as a measurement corresponding to a signal with a wider or narrower (shter) wavelength. For
example, the WL combination can be considered to have a wavelength ofy, = cXf; f), which
is clearly larger than either ; or . The widelane and narrowlane combinations are not typically
applied on their own, but rather are combined to form the Hatch-Melbourne-Wubenna (HMW)

combination, which is given by:

fi i few fij+fkx
fj f fj+fk

HMW i = (1.16)

Note that this combination uses both carrier and code observations. Consgr the result of substi-

tuting Equation 1.4 and Equation 1.5 into Equation 1.16, which after some sinpli cation yields:

HMW 1= wi(zn z2)+ Wl" v e N N (1.17)

From this expression, it is clear why this combination is used for cyte slip detection. In
addition to it being both ionosphere- and geometry-free, its use of thewidelane carrier phase
combination ampli es the integer ambiguity terms while its use of the narrowlane code phase com-
bination suppresses the large code phase noise (sincg. > n_). The third panel in Figure 1.4
shows the HMW combination, and the slips that are obvious in the GF combiration are also appar-
ent in the HMW combination. Moreover, the ionosphere variation is eliminated in this combination,

although there is larger noise presence than in the GF carrier phase cormation.

1.2.3.2 Triple-Frequency Combinations

Since the launch of the rst GPS Block-1IF and QZSS satellites in 2010, more and more

GNSS satellites broadcasting at three or more frequencies have come od. Even before their



13

launch, the various linear combinations involving triple-frequengy signals were investigated [18]. In
particular, the GPS L5 signal, centered at 1,176.45 MHz, allows for computinga combination that
is both ionosphere-free and geometry-free and that uses only carrier plse measurements. The so-
called geometry-ionosphere-free (GIF) combination has been used invariety of applications, from
identi cation of subtle variations in the satellite hardware biases [53]to xing of integer ambiguities

[84] and cycle slips [20]. We choose to express the carrier-phase-ofily combination as:

GlFijk =C 5 ) i+Cx ) j+Ci  j) « (1.18)

for as de ned just after Equation 1.5. Derivation of these and other combination coe cients is
provided in Appendix A. Examples of the cycle slips in the triple-frequency GIF phase combination

are included in Section 1.4 and in Chapters 3 and 4.

1.2.4 Cycle Slip Mitigation Using Phase Combinations

So far, we have seen how certain measurement combinations can be ugdbr discerning the
e ect of cycle slips. One of the most widely cited approaches to cyel slip correction, the TurboEdit
algorithm from [8], makes use of the HMW and GF carrier combinations to mitigate cycle slips
in dual-frequency measurements. To deal with the e ects of code masurement noise, it computes
the running mean and variance of the HWM combination over phase-connectk segments. If a
subsequent sample of the HWM combination lies outside of a speci ed tteshold, say 4 standard
deviations from the mean, then a slip is detected. The top panel of Figte 1.5 illustrates this
process for one of the slips that occurs in the data segment from Figur&.4. The running average
of HWM is shown in a solid line with 4 bounds indicated by the dashed gray lines. Once a slip is
detected, the mean and variance estimates are reset and the slip ampldes can be estimated using
the changes in the HWM and GF combinations caused by the slip. For the HWM ombination,
we compute HWM as the di erence between rst sample after a slip and the last mean estimate
before the slip. For the GF carrier phase combination, in order to accounfor the ionosphere trend,

we use a polynomial extrapolation to predict the next GF sample after the slip. We take GF to
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Figure 1.5: Up-close example of the carrier GF and HWM combinations from Figue 1.4. In the
top panel, the running estimates for the HWM mean and 4 bounds are shown along with the
raw HWM samples. Both panels indicate the magnitude of the jump in the @mbinations due to a
cycle slip occurrence around 72 minutes into the window.

be the di erence between the actual and predicted GF samples. Thi process is also illustrated in
second panel of Figure 1.5. With HWM and GF we can estimate the slip ampli tudes by solving

the system:
2 3 2 32 3

HWM
3 =9 W9 “L (1.19)
GF 1 2 Z3

where zy are the cycle slip amplitudes on each signal.

After solving this system, the values for zx need to be xed to integers. Cycle slip mitigation
algorithms tend to do one of two things: 1) they round them to the nearestinteger, or 2) they search
for the best integer solution taking into account correlation between he estimates of z; and z».
For this second approach, many algorithms implement the least-squares aniguity decorrelation
and adjustment (LAMBDA), which is an established method for xing int eger-valued parameters
that is widely used in GNSS ambiguity resolution [77]. We discuss thisalgorithm in more detail
when we introduce our approach to cycle slip estimation in Chapter 4.

Overall, the essential steps of the TurboEdit algorithm can be desched as detection, re-
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gression, and xing. To elaborate, we rst detect slips as outlier in the changes of some. Then,
we use the deviation in these combinations from their nominal or predited values in order to
regress on the cycle slip amplitude parameters z. Finally, z are xed to integer values. These
are the prototypical steps for most cycle slip algorithms, and many of the gbsequent mitigation
approaches can be seen as extensions of the Turboedit algorithm. For examep [52] introduced
weighting factors for the HWM coe cients based on satellite elevation, and the authors from [103]
and [102] extended the HMW to analogous triple-frequency combinations. Oter algorithms try
to make use of other measurements combinations. [94] included use of tlwde-carrier widelane
(WL) combination to help address di cult-to-detect slips in dual-f requency measurements. [20]
suggested a series of combinations to address slips in triple-fregacy signals with an emphasis on
the GPS and Galileo systems, and later [35] presented a similar approadiesigned for the Beidou
system. Additionally, the work in [26] o ers some improvement to these methods by introducing
dynamic detection thresholds based on the posterior distribution of he various phase combinations.
However, when it comes to small cycle slips (on the order of 1-2 cyclgsit has been repeatedly
shown that code phase noise in linear combinations overwhelms the dity of any combination
using code phase observables [20]. Therefore, many authors focuseckithe orts on tracking the
ionosphere variation in order to make optimal use of the precise informatn in the GF phase com-
bination [50], [14], [101]. Alternatively, IF combinations can be used when tiple-frequency signals
are available and/or the non-dispersive signal component can be estimatef20], [54]. Either way,
the fact remains that correct identi cation of small amplitude slips ( 1-2 cycles) relies heavily on
the use of multi-frequency carrier phase measurements and constrdas on uncertainty of dispersive

and non-dispersive sighal components.

1.3 State-Space Approaches to Cycle Slip Mitigation

While the use of speci ¢ phase combinations provides an intuitive ad computationally con-
venient approach to identifying cycle slips, performance of such mthods cannot outperform those

that use a full set of unaltered phase measurements. This fact was pdid out in [3], where the
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authors considered a state-space approach for cycle slip estimation. Bgtate-space" approach, we

simply mean using models of the form:
y=Ax +B z+ (1.20)
where
y is a full set of raw measurements
X is some set of oat-valued parameters
Z is some set of integer-valued cycle slip amplitudes
A and B represent the system relating these parameters to our measuremisn
is noise

The key aspect of these approaches is that they use uncombined measorents in y, in contrast
to the approaches we discussed in the last section that lose informatiomhen combining mea-
surements. However, this does not mean that the use of measuremenbmbinations is necessarily
inferior. Methods using carefully chosen combinations can be viewikeas e cient approximations
of state-space approaches. More speci cally, their combination coe cents arise as approximations
to the eigenvectors of the matrix AQ yAT + Q , whereQ and Qy are covariances quantifying the
uncertainty in the noise and non-integer parameter model terms. Ths matrix is a key part of our
estimation approach that we develop in Chapter 4.

In models of this form, the termsGand | would be included inx. Clearly, their behavior and
how they are modeled has a direct impact on the estimation of z, and vice versa. [3] quanti ed how
uncertainty in these dispersive and non-dispersive signal componeés leads to incorrect estimation
of slip amplitudes in dual-frequency signals. Subsequent work in9P] assessed how a third signal
frequency would bene t estimation performance. The work in [90] demostrates the performance
of models using dual- and triple-frequency measurements from mtiple satellites simultaneously.

One of the main bene ts of state-space approaches is that they o er greaterexibility in how we
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model the di erent phase components and their uncertainty. For exanple, with the approach we
introduce in Chapter 4 we assume stationary Gaussian process moddiar the non-dispersive and

refractive ionosphere phase components.

1.3.1 Modern Approaches and Challenges in Cycle Slip Mitigation

Most cycle slip approaches try to detect slip occurrences usingipt two measurement epochs,
or alternatively, a single epoch of time-di erenced measurements These types of algorithms have
been successful under normal signal conditions for 1 Hz or slower measmments. For instance, the
authors in [20] found zero faulty cycle slip estimates when applying heir algorithm to 1 Hz GPS
data, even with phase noise standard deviations reaching up to 1/2 cycleHowever, when it comes
to more challenging signal conditions, uncertainty in the variation of sgnal phase components
can cause most cycle slip algorithms to fail. The authors of [2] rst discssed the particularly
di cult problem of dealing with cycle slips during ionosphere plasma bubble events when phase
measurements contain multiple cycle slips and unpredictable vagtions due to changes in ionosphere
total electron content (TEC). Along with the authors in [101] and [65], they emphasize the utility
of IF phase combinations and careful estimation of non-dispersive phas@mponents when it comes
to detecting cycle slips in these scenarios. However, as noted ][ even with careful estimation
of non-dispersive components it may still be impossible to e ectvely estimate slip occurrences in
time-di erenced measurements when the ionosphere variability $ severe.

Several authors noted the greatly improved estimation capability whenusing multiple mea-
surement epochs. For instance, the authors in [21] provided a probalistic approach to detecting
slip occurrences in a window of measurements by deriving the pterior for slip occurrence in a poly-
nomial regression. The authors in [14] considered a forward-backward mawy window algorithm
speci cally targeting dual-frequency signals during high ionosphee activity, and [102] presented
a similar algorithm for triple-frequency signals. Also, while a majority of cycle slip mitigation
research has centred around ionosphere e ects, it is not the only souecof challenging signals con-

taining cycle slips. One example comes from the work in [85], which gsents an algorithm to detect
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and remove cycle slips in weak signals re ected o the ocean surfacédther challenging sources of
cycle slip occurrence include troposphere scintillation [96], uvan multipath [28], and high-dynamic
receiver platforms or oscillators. For this latter case, [51] proposed detting slips as outliers in
the singular spectrum over a window of measurements, and [49] proposedulti-epoch detection in
the context of sequential Itering. Overall, the common thread in the most e ective algorithms in
each of these domains is that they use as much information as possible: .i.extended windows of

high-rate raw phase measurements.

1.4 GNSS Cycle Slip Datasets

Here we introduce datasets of signals under harsh conditions that contaimmultiple cycle
slips. We will use these datasets in chapters 3, 4, and 5 to assess andidate di erent mitigation
algorithms. For the Ascension Island and Hong Kong datasets introduced belv, we use phase
measurements where a majority of non-dispersive phase componentave been removed using a

detrending technique that we describe in Section 3.2.1 of Chapter 3.

1.4.0.1 Ascension Island

The rst dataset consists of commercial receiver output (Septentro PolaRxS) along with raw
intermediate-frequency (IF) data for triple-frequency GPS signals from a receiver near Ascension
Island (7.95, 14.36 W) on 2013-03-10. Raw data from GPS L1, L2, and L5 bands was collected
and recorded by the SeNSe Lab, and was tracked using the robust tracking g@brithm from [92]. As
shown in the rst panel of Figure 1.6, the signal from GPS PRN 24 contained gni cant uctuations
in amplitude beginning at around 20:00 UT (also local) and lasting until around 21:30 UT. During
this time, the satellite rose from around 13 to 27 elevation. The middle and bottom panels of
Figure 1.6 show the detrended carrier phase and GIF carrier phase corimation for the L1, L2, and
L5 signals. Many discrete jumps occur, indicating the frequent ocurrence of di raction-induced
cycle slips. These jumps coincide with fading of the signal amplitde. We take a closer look at the

cycle slips that occur in this dataset in Section 3.3.1 of Chapter 3.
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Figure 1.6: Triple-frequency C=Ng, phase, and phase combinations corresponding to a signal from
GPS PRN 24 that was measured during a scintillation event on 2013-03-10 by a ceiver on Ascen-
sion Island.
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1.4.0.2 Hong Kong

The second dataset comes from a commercial GNSS receiver (SeptentfwlaRxS) located
just outside of Hong Kong (22 N, 115 E). GNSS measurements exhibited e ects due to a strong
ionosphere scintillation event on 2013-10-05. We again consider signals from GPRR 24, which
showed particularly strong deep fades lasting from around 12:00 to 13:00 UT or aund 20:00 to
21:00 LT. During this time, the satellite rose from around 31 to 61 elevation. The top panel of
Figure 1.7 shows the signal EGNg obtained for L1, L2, and L5 signals, demonstrating the presence
of amplitude uctuations associated with diractive scintillation. = The second panel shows the
detrended phase measurements and the bottom two panels show the IF dnGIF carrier phase
combinations, respectively. Again, jumps in the phase combinations idicate the occurrence of

cycle slips.

141 LEO Ocean Re ection

In addition to cycle slips caused by ionosphere scintillation, we als consider slips in the
L1/L2 GPS signals that were re ected o the ocean and collected by a receier on board a low
Earth orbiting satellite from Spire Inc.. Figure 1.8 shows the signalamplitudes in the top panel, the
detrended phases in the middle panel, and the GF combination of L1 and L2arrier phases in the
bottom panel. The occurrence of discrete jumps in the GF signal indiate cycle slips. The chaotic
phase behavior at the beginning of the plot likely corresponds to non-gherent signal measurements,
similar to the previous example. It is important to acknowledge that as signal conditions degrade

we will reach a point where cycle slip mitigation is no longer feasibler even meaningful.

1.4.2 Mountaintop RO

Our nal example of cycle slips comes from mountaintop radio occultation (RO) measure-
ments. A high-gain dish antenna located on top of Mount Haleakala, Hawaii (3 km ditude)
collected the signals from very-low-elevation and over-the-horizonlGNSS satellites. GPS signals

were acquired for a rising event with PRN 03 on 8 May 2017. Figure 1.9 showthe L1 signal C=Ng
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Figure 1.7: Triple-frequency C=Ng, phase, and phase combinations corresponding to a signal from
GPS PRN 24 that was measured during a scintillation event on 2013-10-05 by a ceiver near Hong
Kong.
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Figure 1.8: Measurements from L1 and L2 GPS signals that were re ected o tke ocean surface
and received by the low-Earth orbiting Spire radio occultation satdlite. Top panel shows C=Ng
uctuations, middle panel shows the detrended phase, and bottom pankeshows the presence of
cycle slips using the GF combination of L1 and L2 carrier phases.
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and carrier phase measurements. In this case, the navigation data bitasere not removed and so
the carrier phase measurements are aicted by half-cycle (instead offull-cycle) slips. In addition
to already very low C=Ng the signal experiences several deep fades during which the signdiase

rapidly accrues a bias due to cycle slips.

14.3 Datasets: Summary

Looking at each of these examples, a common aspect is the occurrence of maxycle slip over
a periods less than a minute. One of the reasons we are able to see thedips in this data is our
use of high-rate (100 Hz) carrier phase measurements. Without such measmments, many of the
slips in these examples may not be identi able. Another pattern is the coincidence of cycle slips
and signal fading. We explore this relationship more in chapters 2 and 3, aneve make explicit use

of signal amplitude when performing mitigation based on the backpropagation Iter in Chapter 5.

15 Summary

In this chapter, we introduced the cycle slip problem along with amodel for GNSS measure-
ments. We discussed linear combinations of these measurements andvinthey have been used for
cycle slip mitigation, along with a broader discussion about approaches taycle slip mitigation. We
then introduced some GNSS datasets with harsh signal conditions containg phase uctuations,
noise, and many cycle slips. In the next chapter, we will charactede the occurrence of cycle slips
in simulations. In the subsequent chapter, we will take a closer lok at the occurrence of cycle slips
in the real datasets we just considered in Section 1.4. All of this will ke in preparation for our new

approach to cycle slip mitigation that we present in Chapter 4 and Chapte 5.
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Figure 1.9: Example of L1 signal G:No and carrier phase measurements collected using a high-gain
dish antenna on top of Mount Haleakala, Hawaii.



Chapter 2

Cycle Slip Simulation and Characterization

2.1 Introduction

In Section 1.2.1 in Chapter 1, we reviewed the di erent processeghiat cause of cycle slips to
occur. Two of these causes are the unwrapping of noisy phase measurenseand the occurrence
of phase transitions both of which occur for signals under harsh conditions. In particular,when a
radio signal experiences deep amplitude fading, its phase will likg undergo a simultaneous rapid
half-cycle change. In the context of GNSS signals, these events are kmp as canonical fades and
commonly occur during strong scintillation or multipath re ection [ 58]. Occasionally, the rapid
half-cycle phase changes are part of actual full-cycle phase transitionsr cycle slips, which occur
over the duration of the fade. It is important to stress that these cyde slips are a product of
the propagation environment and are not necessarily due to receiver paessing errors. However,
regardless of their origins, all cycle slips cause a persistent change carrier ambiguity. During
conditions of strong scintillation or multipath associated with frequent and intense fading, these
di raction- or multipath-induced cycle slips can be the largest and most challenging source of
error that corrupts GNSS phase measurements. In order to advance navigamn and remote-sensing
applications under such harsh conditions, it is important to analyze andcharacterize this error

source.

O This chapter is adapted from the paper GNSS Carrier Phase Cycle Slips Due to Di ractive lonosphere Scin-
tillation: Simulation and Characterization published in IEEE Transactions on Aerospace and Electronic Systems
[10].
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2.1.1 Phase Transitions

As we introduced in Chapter 1, the received and demodulated baseban@NSS signal can be

modeled as a complex exponential:
s(t) = A(t)exp(i () + (1) (2.1)

When a signal refracts through atmospheric structures or re ects o of rough surfaces, the received
signal essentially becomes a superposition of multiple copies of the kct" signal. The result

is called interference or multipath, and it leads to uctuations in t he phase and amplitude of
the received signal. In the simplest case, we consider the scenarof interference between two

continuous-wave signals:

Aexp(i )+ Aexp i~ = Aexp( )[1+ exp( ); (2.2)

where = A=A is the amplitude ratio and = is the di erence in phase between the two
signals. The resulting signal can be interpreted as a nominal signah exp (i ) modulated by the
complex number 1+ exp(i ) '. Looking at Equation 2.2, we see that whenever  approaches
180, and is large enough, the resulting signal experiences a deep fade. It lkistrative to consider
the signal behavior in time-series that are modeled by this equation The top image in Figure 2.1
depicts two trajectories of the modulation term in the complex plane, with corresponding time-series
of the resulting amplitude and phase shown beneath. [17] provides drsilar visual descriptions of
phase transition occurrence for the case of ionosphere scintillatiorin the context of GNSS signals,
this behavior is called canonical fading

Scenarios A and B both show the typical canonical fade behavior that occigwhen the phasor
passes close to zero. A crucial di erence is that the signal phasor in eoario B wraps around the
origin thereby causing a cycle slip relative to the nominal signal phas. A third example is provided

by scenario C in Figure 2.2, where the simulated parameters are the sanas in scenario A, but with

! Note that, during di ractive scintillation, it is usually pos sible to de ne a direct signal phase that is consistent
with the signal phase measured in absence of diraction. For instance, this would be the unperturbed eld that
is considered in the Rytov approximation of the electromagneti ¢ eld propagating through a random structure (c.f.
[88]).
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Figure 2.1: The rst panel depicts how the trajectories of the complex modulation term in Equation
2.2 for two hypothetical fade scenarios. The second panel shows the cesponding time series in
resulting amplitude and phase modulation of the signal.

added noise assuming a €Ng of 40 dB-Hz. In this case, the noise causes a cycle slip to occur even
though there was no slip in the original noise-free phase trajectory. Tis simple example illustrates
two key points. First, canonical fading will only sometimes correspod to cycle slip occurrence,
and whether it does is not clear just from looking at the phase time seaes from one signal. The
phase in scenarios A and B actually look very similar when re ected vetically, but only scenario

B contains a cycle slip. Secondly, the e ects of noise can induce clgslips in the measured phase,
and its e ects will compound with scintillation di raction. Deeper fading and lower baseline GNg

leads to a greater chance for cycle slips.
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Figure 2.2: Shows simulated phase and amplitude time series with theame parameters as example
A in Figure 2.1, but with added noise assuming a GNg of 40 dBHz.

Admittedly, real-world di raction is quite a bit more complicated th an the idealized interfer-
ence model we just considered. More generally, the motion of the phasan Figure 2.1 corresponds
to a sort of random walk [31], [97]. For example, Figure 2.3 shows the complexhasor along with
amplitude and phase measurements corresponding to a more realisticistillation signal, which we
simulate using the method outlined in Section 2.2.1. The gure showswo cases: noise-free and
noisy. Two canonical fades occur as the phasor passes close to the originorEhe noise-free case,
only the second fade corresponds to a phase transitions, while in theomsy version the rst fade
corresponds to a cycle slip and the phase transition in the second fad® longer occurs. This more
realistic example further illustrates the intricate relationship between phase transitions and noise
in these types of signals and how their e ects compound to either crate or mask the occurrence
of cycle slips. This is one of the main topics we investigate in the reminder of this chapter. More-
over, as we discuss towards the end of this chapter and in Section 3.3 Ghapter 3, signal fading in
real data does not always exhibit sharp drops in intensity like we se in the simulation examples.
Sometimes deep fading is extended or followed by lingering regions ofoderate or weak fading [47],

[42]. For these scenarios it can be especially unclear whether or not aag slip has occurred.
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Figure 2.3: Demonstrates two examples of canonical fades. The rst two pasls shows the
di ractive eld phasor trajectories in the complex plane. The bottom two panels show the signal
amplitude and phase. Each canonical fade corresponds to a decrease of monart 10 dB in signal
amplitude along with a rapid half-cycle phase change. The blue and redddors distinguish the
noise-free and noisy versions of the signal. The at blue line in the seond panel represents the true
phase o set due to a phase transition that occurs in the true phase dung the second fade only.
Meanwhile, the noisy signal shows how the impact of noise can mask or inde cycle slips that are
or are not present in the noise-free signal. The alternate shaded portianof signal amplitude in the
second panel demonstrates the de nition of a single fade that is used faanalysis in this paper.

2.1.2 Previous Work

In this section, we review previous work that has been done to charactee cycle slip oc-
currence. Traditionally, cycle slips are considered to be the radt of a non-linear interaction that

occurs in a PLL driven by noisy phase measurements, and there are edilished results about the
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mean time to slip occurrence in phase-lock loops (PLLs) [76], [1]. Thauthors in [36] extend this
analysis to cycle slips that occur for GNSS PLLs during strong ionosphex scintillation. They as-

sumed a squaring PLL that is insensitive to half-cycle phase change&.g. the Costas PLL) and
loosely identi ed cycle slips as belonging to one of two classes: hatfycle slips due to canonical
fading, and half-cycle or greater sized slips due to extended deep faud) plus noise. For the latter
case, the mean time between slips was assumed to occur at the rate catsnt with original analyses
for a noise-driven PLL. The authors in [24] applied this analysis to real daa from a scintillation

campaign and provided real-world context for cycle slip measurement asults. They concluded
that signal di raction and associated cycle slips are a dominant error souce during strong scin-
tillation. One issue with these analyses is that GNg estimation is poor at low SNR, so modeling
cycle slip occurrence based on fading depth does not accurately capt the true probability. More

importantly, these analyses did not account for the contribution of phasetransitions to cycle slip

occurrence during strong scintillation.

The concept of phase transitions in the context of GNSS scintillation wasoriginally identi ed
in phase screen models used to simulate strong scattering from iongisere irregularities. These
models typically use the parabolic approximation to the wave equationto propagate the e ects
of one or more phase screens representing the cumulative impact of iorpseere irregularities, and
have been successfully used to describe multi-frequency adysations of real di ractive scintillation
[57], [43]. The hybrid technique introduced in [30] is one such modehat was later used in [31]
and [97] to assess GNSS phase errors. Similarly, [17] used the model odiuced in [16] to analyze
the impact of di ractive uctuations on GNSS phase. These authors identify how phase transitions
occur when the random walk of the diractive eld phasor (representing the complex multipath
modulation imparted on the GNSS signal) wraps around the complex origin. As & saw in the last
section, due to the nature of these random walks, phase transitions almbslways coincide with
deep signal fading and rapid half-cycle phase changes (i.e. canonical faje

Authors from both [31] and [17] investigated errors in the dual-frequency onosphere-free

combination, speci cally acknowledging the impact of phase transitiors at stronger scintillation
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strengths. In [17] they noted that their cumulative impact on phase error could be up to several
meters. In [97] they used the random phase screen model to study theccurrence of canonical
fading and its relationship to scintillation intensity as characterized by the S, index. They used
the term \phase transition" to refer to phase variation during canonical fades, regardless of whether
and actual full-cycle phase transition occurred. Note, we choose to esthe term only to describe the
full-cycle transition event (e.g. the second fade shown in blue foFigure 2.3) that introduces biases
into the true unwrapped phase. The authors also investigate cycle g occurrence, but consider
any canonical fade (with eld amplitude below -10 dB and a rapid half-cyde phase change) as a
proxy for the occurrence of cycle slips. This may be applicable foPLLs that are insensitive to
half-cycle phase changes, but is not true for general four-quadrant phaseacking. Overall, both
sets of authors agree that the e ect of phase transitions is an important eror to contend with in
strong di ractive scintillation.

The terminology surrounding phase transitions thus far has been incoristent and deserves
clari cation. While in [31] and [97] they essentially equate phase trangiions to cycle slips, the
authors in [17] argue that because phase transitions occur \gradually over mansamples. .. [they

are] distinct from cycle slips, which are abrupt phase changes of a cig (or more)...." In our

opinion, both authors are correct. The conventional usage of the term cycleslip would seem
to indicate that phase transitions are an error in the receiver measurmment and that they occur

instantaneously between two measurement epochs, neither of whicis true. On the other hand,

phase transitions introduce an integer-cycle bias into the phase nasurement, just like cycle slips.
To geodetic users who use 1 Hz data or slower there may be no way to éientiate between phase
transitions and cycle slips caused by other factors, such as receivartifacts. Moreover, even at
high sampling rates there is not necessarily a clear distinction beteen phase transitions and the
noise-induced cycle slips that occur during deep fading, as studd in [36]. Introducing noise can
cause new cycle slips to occur or mask the occurrence of cycle sligue to phase transitions. As an

example, Figure 2.3 provides a noisy version (in red) of the true phas (in blue) during canonical

fading. In this case, the noisy phase ends up slipping during the st fade, for which there was
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no slip in the true phase, and not slipping during the second fade,dr which there was a slip in
the true phase. The purpose here is to recognize how the impacts ofgsial fading and noise can
compound on one another to produce many cycle slips. In the end, due ttheir common origins,
we suggest the terminology \di raction-induced cycle slips" to encompass both phase transitions
and noise-induced cycle slips that occur during strong scintithtion.

In the remainder of this chapter, we aim to clarify the contribution of phase transitions
towards cycle slip occurrence during strong scintillation. To d this, we look at simulations of
ionosphere scintillation at three L-band frequencies in order to analge the impact of di raction-
induced cycle slips on GNSS phase measurements. We use the ionoggheghase screen model from
[62], which has been validated using real multi-frequency GNSS datani[43] and [91]. A caveat to
this model is that it only really applies to equatorial scintillation s cenarios, and while di ractive
scintillation is mostly associated with low-latitudes, it can also occur on radio occultation links [56]
or occasionally even at high latitudes [71]. Despite this caveat, the ntbodology applied in this work
can be extended to these other domains where signal di raction occursgiven adequate models.
Using these simulations, we look at how often di raction-induced cyde slips occur for given fading
depth and duration, as well as look at the statistics of their cumulative impact on measured phase.
The main contributions of this work are the following. First, we quantify the cycle slip occurrence
rate dependence on the signal baseline C/NO and the scintillation intesity. Second, we con rm
that the Poisson process is an appropriate model to describe the cyelslip occurrence and identify
the Skellam distribution (Equation 2.12) as an accurate representation of he cumulative impact
cycle clips on phase measurement errors. Finally, correlations beten the cumulative impact of
cycle slips for the three carrier frequencies are established faarying levels of scintillation levels
and baseline GNg. As a whole, the results serve to partially distinguish cycle slig associated
with phase transitions and those occurring due to deep fading plus sise. This has implications for
previous characterizations of cycle slip occurrence that only conser fading parameters. Moreover,
these results can provide a useful baseline for assessing or prettig cumulative phase errors during

strong di ractive scintillation.
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Figure 2.4: The density of the random walk of the di raction eld phasor in t he complex plane.
The point at 1 (marked by a white dot) corresponds to zero diractive perturbations, while the

origin corresponds to complete destructive interference. The caecutive panels illustrate how, as
scintillation strength increases, it may be more probable for the ran@m walk to wrap around the

origin and cause cycle slips.

The chapter is structured as follows. In the rst section, we introduce the scintillation simula-
tion model and present a model for the impact of noise on cycle slip ocerence. In the subsequent
section, we introduce de nitions of fading depth and duration and desribe a technique for ex-
tracting the occurrences of and cumulative e ect of cycle slips fom the simulated phase. Then we
present and interpret results for the dependence of cycle slipsn scintillation and fading parameters,
as well as on the cumulative error due to cycle slips and its correlatioracross frequencies. Finally,
we summarize the essential results and discuss the challenges andtgntial solutions associated

with di raction-induced cycle slips.

2.2 Background

2.2.1 Phase Screen Scintillation Model

For this chapter, we consider the following model for the receivedignal phase, which ignores

any initial ambiguities and biases from Equation 1.5 in Chapter 1:

w=2 X tecw) 23)
k
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We introduce the term i to specically represent the diractive scintillation phase, in cluding
phase transitions. Note that we have substituted the term ¢l from our original phase model
in Equation 1.5 with the de nition of refractive ionosphere phase from Equation 1.7. Simulating
scintillation phase amounts to creating realistic time series for the last two terms in this model.
In order to simulate  during strong scintillation, we use the equivalent phase screen odel from
[62]. Given a set of phase screen parameters and a set of signal freques¢ithe model generates
a consistent set of phase screensk(t) and realizations | of the complex eld at the receiving
antenna. In our simulations, we consider the true (noise-free) phasand amplitude of the signal to
be:

k(t) =unwrap (\ (1) (2.4)
Ac(t) = «(t) (2.5)

There is one small caveat to Equation 2.4, since extremely deep fadeartlead to incorrect phase
unwrapping in the discrete signal. However, this problem can be sobd by applying Fourier in-
terpolation as described in [61]. Then, the time series i (t) e ectively simulates Equation 2.3,
assuming the termG(t) is zero.

Figure 2.5 shows examples of noise-free simulated scintillation iehsity and phase time series
for a case of moderately strong equatorial scintillation for all three sigmal frequencies. Note that

the phase is converted to TEC units via:

k(0

TECk(t) = :
e

(2.6)

The similarity between all three signals' phases is consistent wi the majority of variation being
due to the phase screens, which are approximately identical among ththree frequencies. The
persistent discrepancies between the phases are due to the daction-induced phase transitions.

We can deconstruct the simulator output ( t) into:

= sexp(i (1)) (2.7)
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where
s=] jexp( s(t) =] jexp(( (t) (1) (2.8)

is interpreted as the di ractive perturbation to a normalized, unp erturbed eld ¢ =-exp(i (t)). In
other words, we treat the phase screen as the refractive phase (i.ehdé TEC term from Equation 2.3).
Figure 2.4 shows histograms of ¢ for various scintillation conditions, revealing how as scintillation
strength increases it becomes more probable for the di raction pertubation to wrap around the
origin and cause a phase transition. The colored lines in Figure 2.6 showhé diractive phases

sk(t) corresponding to the simulated example in Figure 2.5. It reveals howhe uctuations and
phase transitions due to strong scattering are sometimes correlated @hsometimes uncorrelated
among signals at di erent frequencies.

The model specifying the equivalent phase screens requiresevparameters:U, =ve , o, P1,

and p,. We brie y describe them here, and for an in-depth discussion readrs are referred to [62].
The universal strength parameter U determines the magnitude of plasma irregularities relative to
the background density, and generally describes the strength of amplide and phase uctuations
in the resulting scintillation. The parameter =v, comprises the ratio of the rst Fresnel radius

to the e ective scan velocity ve through the ionosphere structure, and is correlated to the time
between di ractive uctuations. The remaining parameters g, p1, and p, respectively de ne the
break scale and slopes of a two-component inverse power law spectrurerted from the statistical
structure of the ionosphere irregularities. This set of parameters s de ned for a given signal
frequency and then mapped to physically consistent values for othefrequencies. The stochastic
phase screen structure is initialized using the same random seed $hat signal uctuations across
di erent frequencies are consistent with propagation through the samerandom structure.

Our goal is to provide an intuitive analysis of phase transition or cycle §ip occurrence under

a variety of realistic equatorial scintillation scenarios, which is dicult to do using ve model-
speci c variables. The authors in [91] suggest a reduction of the modeld just two parameters { the

scintillation index S, and decorrelation time { that are commonly used in characterizing equatorial
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scintillation (c.f. [37], [24]). As such, we useS; and to characterize the dierent scintillation
scenarios that we consider in this study, whereS, is de ned in the usual way as the normalized
deviation of signal intensity and decorrelation time is de ned as when he intensity autocorrelation
drops to 1=eof its peak value. Work from [93] shows that for ground stations at low latitudes, o, p1,
and p, remain close to nominal values of 0.8, 2.7, and 3.6, respectively. Meanwhijlthe parameters
U and =v, are able to capture almost all of the observed variation in scintillation characteristics.
They empirically derive the mappings between parameters by simting scintillation for various
values ofU and =v,. and then computing the correspondingS, and from the resulting simulated
intensity. The results show that the value of S4 can be directly related to U, while and =v¢
have a linear dependence that varies withU. We did this in order to determine the phase screen
parametersU and =v. provided in Table 2.1 that correspond to the approximate range ofS; and
values in Table 2.2. The decrease in slope relating to =ve as U increases is in agreement
with the analysis by [16] and [24] that showed how higherS, generally corresponds to lower for

realistic equatorial scintillation.

Table 2.1: Phase Screen Parameters

S1T1 S1T2 SI1T3| S2T1 S2T2 S2T3| S3T1 S3T2 S3T3| S4T1 S4T2 S4T3
L1, 030 030 030 060 060 060 1.20 120 120 200 2.00 2.00
Uu L2| 068 068 068 1.37 137 137| 273 273 2.73| 456 456 4.56
L5 0y9 079 0.79| 157 157 157| 3.15 315 3.15| 524 524 524
Lr, 150 070 030 150 0.70 0.30| 150 0.70 0.30| 1.50 0.70 0.30
— L2| 170 079 034|170 079 034|170 079 034 170 0.79 0.34
L5 174 081 0355 174 081 035 174 081 035 1.74 081 0.35

In our analysis, scintillation strength and scintillation fading rate ar e two of the primary
factors associated with cycle slip occurrence due to scintillatin, with higher occurrence rates cor-
responding to stronger scintillation (high S;) and faster fading (low ). It is known that phase
transitions begin to occur in scintillation signals when S, passes around 0.6 [31], which also tends
to be the point at which receivers start experiencing cycle slip and loss-of-lock [23]. During solar

maximum, receivers at low latitudes, especially near the equatorialonization anomaly, experience
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Figure 2.5: An example simulation of scintillation amplitude ( rst panel ) and phase (second panel)
corresponding to the L1, L2, and L5 frequencies for a strong scintillatiorscenario S3T2. Note that
phase has been scaled to TEC units.

S, values reaching 1 or higher, while ranges between 0:2 1:3 depending on scintillation strength
[24], [23]. Based on these analyses, we chose pairsSafand parameters for each frequency (L1,
L2, L5) corresponding to a set of 12 scintillation scenarios that we considein this study. Their
values are provided in Table 2.2. For convenience, we enumerate theseenarios using the template
\S#T#" to indicate the di erent strengths and decorrelation times.  Increasing numbers corre-
spond to an increase inS4 and decrease in , which translates overall to an increase in cycle slips.
As an example, \S4T3" corresponds to the scenario with the highess, value and shortest value,

which should produce the most cycle slips.
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2.2.2 Simulating the Impact of Noise

Scintillation strength and fading rate both impact the occurrence rates of cycle slips in strong

GNSS scintillation. However, in real-world scenarios the impact of nois cannot be ignored. We

consider a baseline carrier-to-noise density ratidcC=Ng to be the relevant parameter determining
noise impact on cycle slip occurrence.C=Ng is de ned as the carrier-to-noise density ratio that
would be measured in the absence of any scintillation di raction. In order to simulate the impact

of di erent C=Ng, we generate noise according to:

O N © Y =2 (2.9

i.e. k(t) are assumed to be independent random variables drawn from the zero-@an circular
complex normal distribution with variance 2. We assume the noise bandwidtrB is equal to 1=T,
where T = 0:01 seconds is the measurement integration time and sampling interval sed in this

study. The noisy simulations of phase and amplitude are then given by:

k() =unwrap (\ ( k(t)+ «(1))) (2.10)

Ay = k(®+ (1) (2.11)

Note that this model for introducing noise into the phase measuremets accounts for thermal
and processing noise only, and speci cally does not account for phasettgr due to the receiver
oscillator. This is generally not an important factor for ionosphere monitoring receivers, which are
usually designed to have low phase noise [82], but may be an important ceiteration for other
types of receivers and should therefore be studied further. The gmoach we take should still provide
a good diagnostic assessment on the relative contributions of noise to che slip occurrence. In our
analysis, we consider baseline €Ng values from 36 to 50 dB-Hz, which covers the range of observed

values for low-latitude scintillation events studied in [23].
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2.3 Methodology

To reiterate, our aim is to highlight the impact on cycle slip occurrence due to scintillation
and fading characteristics (similar to previous work in [24]), as well asthe importance of C=Ng
and noise. Additionally, we look to analyze the cumulative error distribution due to cycle slips.
To do this requires simulation of a large amount of phase and amplitude tine series for each of
the di erent scintillation scenarios. We also need to establish tte de nition for a signal fade and a
method to determine cycle slip occurrence in the simulated ouiut. In this section, we outline our

approach to these tasks.

2.3.1 Simulation

For each scintillation scenario in Table 2.2, we generate over 1000 hours of istillation.
A large volume of simulations is necessary since phase transitions or dgcslips can be a sparse
occurrence, especially at lower scintillation strengths. We tha add noise and compute the measured
signal for baseline carrier-to-noise density ratios from 36 to 50 dB-Hz accding to Equation 2.10.
We used these simulated amplitudes and phases to obtain fade statists and cycle slip occurrences

as outlined in the next two subsections.

2.3.2 Signal Fade De nition

We de ne a fade segment as a contiguous interval between two local maxiain signal am-
plitude where the normalized amplitude is also less than 0 dB. Befa nding its local maxima, it
is useful to remove smaller oscillations in the signal amplitude by aplying a low-pass Iter with
a cuto around 4 Hz. This helps ensure fade segments are not too short. Té alternating shaded
portions of the amplitude time series in the rst panel of Figure 2.3 illustrate what we consider to
be fade segments. Using this de nition, we de ne the fade duration as he segment duration and

the fade amplitude as the minimum amplitude over the segment.
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Figure 2.6: Diraction phase residual (obtained as the full phase observabn minus the phase
screen component) for the scenario shown in Figure 2.5. Phase is plottén cycles, and the occur-
rence of di raction-induced phase transitions clearly leads to integer-valued biases. The results of
applying the TVD t algorithm are shown with the dashed black line.

2.3.3 Identifying Cycle Slips

Here we introduce a technique that uses total variation denoising (TVD to determine the
occurrence of phase transitions or cycle slips in simulated phasentie series. While cycle slip
detection in real-world GNSS data is complicated by the presence of umown phase components,
in simulations these other phase components are known and can be remavén order to isolate
the diractive phase and cycle slips. Consider the example of di radive phase that is illustrated
in Figure 2.6. In general, its variations are comprised of constant-mean utuations that are
highly correlated across frequencies and contain sparse integer jumms signal mean due to phase
transitions or cycle slips. TVD is an optimization techniqgue commonly used to estimate signals
with sparse derivative components in the presence of noise [66]. Sudh the case for di ractive
phase, when we treat the cumulative bias due to cycle slips as the diged signal and the remaining
di ractive uctuations as noise.

We apply a weighted TVD t (c.f. [4], [5]) to the di ractive phase s, where the weights are

chosen in such a way that ensures only one \jump" occurs per fade. Thiallows us to associate
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each phase transition or cycle slip with a fading amplitude and duration We achieve this using
a penalty weight that is 1 at the minima of fade segments and su ciently large (e.g. 10,000) at
all other times. This penalty applies to the magnitude of the derivative of the TVD t so that

the algorithm only estimates a jump at times corresponding to minima n signal amplitude. We
remove an overall negative bias in the di ractive phase (modulo 1 cyte), which can be understood
as the \tail" of the histograms shown in Figure 2.4. Finally, we quantize the t by rounding to

the nearest integer. An example of the results of this process are siwo with dashed black lines in
Figure 2.6. The occurrences of individual phase transitions or cyclelips are obtained by nding

times where the di erence of this signal is non-zero. Since each jumis constrained to occur at
a fade minimum, we can associate each phase transition or cycle slip wita single fade and its

corresponding amplitude and duration traits.

Table 2.2: Scintillation Parameters

S1T1 S1T2 S1T3| S2T1 S2T2 S2T3| S3T1 S3T2 S3T3| S4T1 S4T2 SA4AT3
L1| 0.36 036 036 050 051 0515 070 070 0.70, 085 0.86 0.86
S L2 052 053 053 03 073 072 093 092 092]| 1.00 1.02 1.02
L5| 056 056 056 0.77 077 0.76| 096 095 094 1.02 104 1.04
L1 129 061 026 1.20 056 0.24| 1.07 049 0.21| 094 044 0.19
L2 | 132 062 0.27| 118 055 0.24| 1.00 047 0.20| 086 040 0.17
L5 132 062 0.27| 117 054 024 099 046 0.20| 0.84 039 0.17

2.4 Results and Analysis

Here we analyze and discuss the fade and cycle slip occurrences obtinusing the methods
outlined in the last section. We rst describe cycle slip rates wih respect to fading amplitude and
duration, showing how these rates change for relevans,, , and C=Ng parameters. We then shift
our focus to the distribution of cumulative cycle slip error, providing tables of cycle slip rates and
correlation coe cients of error among two di erent signal frequencies for the di erent simulation

scenarios.
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2.4.1 Cycle Slip Occurrence Versus Fade Depth and Duration

Figure 2.7 shows the fraction of fades at di erent amplitudes that contain cycle slips. The
scintillation strength increases for each panel from left to right, and we can see corresponding
changes in the dashed lines that show the pdf of fade amplitudes. As isel-established, the
stronger scintillation leads to deeper fades [42]. The solid lines showhat fraction of fades with
a given amplitude experience cycle slips, with each line corresmding to a di erent C=Ng value.
Here we see how a lowe€=Ng leads to an increase in the number of fades with cycle slips at deeper
fading amplitudes. This corresponds with the larger in uence of noig at lower signal amplitudes.
We also observe how as scintillation strength increases the cycleigloccurrence per fade increases
at all fading depths and for all C=N, values. However, at shallower fading depths this increase is
proportionally greater and is present in all C=Ng values equally. Since noise cannot induce cycle
slips as easily at low fading amplitudes, this implies that phase trasitions must be the cause.

Figure 2.8 shows the fraction of fades of di erent durations that contain gycle slips. Similar
to Figure 2.7, the pdf of fade durations is provided with dashed lines. The decorrelation time
decreases in each panel from left to right, highlighting how longer fadeare less frequent for shorter
decorrelation times. Again, the solid lines show what fraction of fades cdain cycle slips. There
is a general trend of increasing cycle slip fraction for longer fade dur&ns, re ecting how when
a signal spends more time at low amplitude, there is a greater chance #t random perturbation
due to noise will cause cycle slips. We see this in the leftmost pah where a larger value leads
to longer fades, and increased noise leads to increased cycle slips hese longer fade durations.
However, as fading rate increases (with a decrease in) the fade durations become shorter and the

dependence of cycle slip occurrence 0G=Ng diminishes.

2.4.2 Cumulative Cycle Slip Occurrence

Let denote the cumulative occurrence of cycle slips measured over 5Simte intervals.

We compute for each independent simulation interval, for each signal frequencyand for all



43

Figure 2.7: Shows the rate of cycle slips per fade as a function of fade anitplde (i.e. fading depth)
for each baseline GNp. The scintillation parameters demonstrate increasing scintillation strength
with S4 = 0:6;0:8;0:9; 1.0 and = 0:6;0:5;0:5;0:4 for the respective panels (which corresponds to
L5 signal for scenarios S1T2, S2T2, S3T2, and S4T2). A histogram estimate of the fade atitude
pdf is also shown in the dashed line. In all cases, lower baseline=N; leads to an increase in cycle
slips at deeper fades, while increase in scintillation strength leds to an increase in cycle slips for
all C=Ng values and especially at shallower fade amplitudes.

Figure 2.8: Shows the rate of cycle slips per fade as a function of fade dation for each baseline
C=Np. The scintillation parameters are S; 0:95 and 2 f 1:0; 0:5; 0:2g for each of the respective
panels (which corresponds to L5 signal for scenarios S3T1, S3T2, and S3T3). Ashbgram estimate
of the fade duration pdf is also shown in the dashed line. We generallyeg that lower baseline GNy
leads to an increase of cycle slip rates, but especially so for low fadates ( = 1) and long fade
durations. At higher fade rates (lower ) all C=Ng values show similar fade rates at all durations.

scintillation scenarios (including di erent C=Ng values). For the volume of simulations used in this

study, this results in around 12,500 samples for each combination of signaG=Ng, and scintillation
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scenario. We histogram these samples in order to estimate the probabi}i mass function (pmf)
of cumulative cycle slip occurrence over 5 minutes. Figure 2.9 slws one scenario of the resulting
pmf on three frequencies. These pmfs follow the Skellam distrilttion, which is expected when
we assume cycle slip occurrence is a Poisson process [70]. The authar [24] also consider a
Poisson process model for cycle slip occurrence, however theg dot consider the cumulative e ect
of positive and negative cycle slips. The Skellam distribution destbes the di erence between
two Poisson processes, and in this case allows us to interpret posie and negative cycle slips as
individual Poisson processes with rate parameters . and [70]. We found the mean of the
distribution to be essentially zero for all scintillation parameter choices, indicating that the rates
for positive and negative cycle slip occurrence are equal, i.e.,+ = . The resulting symmetric

Skellam distribution can be written:

p(n; )==e Ijn( ) (2.12)

where n is the independent variable re ecting cumulative cycle slips, I;,; is the modi ed Bessel
function of the rst kind, and =2 = 2 . is interpreted as the overall rate of cycle slip
occurrence. We t symmetric Skellam distributions to cumulati ve cycle slip histograms for each
signal and scintillation scenario considered in this study. Table 2.3hows the cycle slip rate values
obtained via this process. Figure 2.10 visually summarizes the cyelslip rate results for the L5
frequency. Plugging the appropriate rate parameter into the Skellam dstribution provides the
distribution of cumulative phase error due to cycle slips over arbirary time periods.

As an attempt to characterize the joint distribution of cumulative cyc le slip occurrence, we
can compute the Pearson correlation coe cient for cumulative cycle sip error among each frequency
pair. Since the variance of a symmetric Skellam distribution is eqal to its overall rate parameter

, We compute the correlation coe cient as:

cov( «k; 1)
K|

(2.13)

wherek and | correspond to the two di erent frequencies. Table 2.4 provides he Pearson correlation

coe cients for each frequency pair derived from the same samples used above. For lowes, values,
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Figure 2.9: Examples of pmf estimates obtained from histograms of the cumative cycle slip error
over 5-minute windows. This particular case shows the three fregencies for scenario S4T2 given
in Table 2.2, and for a baseline GNy of 36 dB-Hz. The black lines show the results of tting a
symmetric Skellam distribution to the pmfs.

there are some instances where cycle slip occurrence was too low tompute valid correlation
coe cients, and those entries are marked with dashes. In general, te correlation coe cients show
larger values for less noise (highe€=Np) and stronger scintillation. The L2/L5 signal pair shows
the highest correlation, followed by L1/L2 then L1/L5, which is expected behavior according to
their frequency ratios. At low C=Ny, the correlation is practically zero for moderate scintillation,
where phase transition behavior mostly coincides with deep fades and susceptible to the random
in uence of noise. However, for stronger scintillation, the correlation increases to similar values as
obtained for the noise-free case. This is in agreement with our earliesbservations that more phase
transitions occur with shallow fading amplitudes, and so noise has ks in uence to alter phase
transition behavior. While the correlation coe cient provides som e useful information about how
similar the cumulative errors will be between two frequenciesijt is important to stress that it does

not necessarily describe the full joint distribution of errors for the two frequencies.
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Figure 2.10: Cycle slip rate dependence on baseline=8ly, decorrelation time, and S, index. The
cycle slip rates increase as baseline=Bly decreases, as decorrelation time () decreases, and as scin-
tillation strength ( Sa) increases. The rates are derived from tting the rate parameter of synmetric
Skellam distributions to empirical distributions of cumulative cycle slip error over 5 minutes. The
scintillation parameters increase in strength with S4 = 0:6;0:8; 0:9; 1.0 for the respective panels,
while the di erent colored lines indicate di erent decorrelation times 0:2 1:2. These scin-
tillation parameters correspond to the di erent scenarios given for the L5 signal in Table 2.2, and
demonstrate the general relationship between cycle slip rate and derent factors given in Table
2.3.

25 Conclusion

In this chapter, we used simulations of strong equatorial scintillaton to analyze the com-
pounding e ects of diraction and noise on cycle slip occurrence. The key con rmations and
ndings from the results of our simulations are as follows. 1) As scintilation strength increases
there is a notable increase in cycle slip occurrence rates for all baline C=Ng values at shallower
fade amplitudes. This suggests that phase transitions are a dominant méanism for cycle slips in
this regime (as opposed to noise-induced), and that fading depth is no& consistent indicator for
cycle slip probability as scintillation strength increases. 2) The %ellam distribution does a good
job of describing the cumulative impact of cycle slips on phase measament errors, suggesting that
cycle slip occurrence can indeed be modeled as a Poisson proceHBse distribution was symmetric,
supporting the observation that positive and negative phase transitionsor cycle slips are equally
likely. We provided cycle slip rate parameters that can be used to dscribe error distributions for

a wide variety of equatorial scintillation conditions. 3) We provided correlation coe cients for the
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cumulative impact of cycle slips on di erent frequency pairs. The correlation increases as scin-
tillation strength increases, which also suggests that correlated diractive phase transitions (and
not just canonical fading plus noise) play an increasingly important rolein cycle slip occurrence
for stronger scintillation. We want to emphasize that the cycle slip rate and correlation results
presented here do not consider the interaction between noise anddcking loop implementations,
but they should provide a good baseline for assessing or predictingycle slip error in un Itered

phase measurements.



Table 2.3: Cycle Slips Per Minute

48

C=No [dB-Hz] | S1IT1 S1T2 SI1T3| S2T1 S2T2 S2T3| S3T1 S3T2 S3T3| S4T1 S4T2 S4T3
. L1 0.00 0.00 000 | 0.00 000 000 | 008 0.17 0.40 | 048 098 255

Noise 5 000 000 001 | 011 022 053] 073 169 432 | 1.80 4.48 12.09
Free L5 001 001 002 | 018 0.34 083 | 095 213 595 | 220 515 14.76
L1 000 0.00 000 | 000 000 000 | 010 0.19 043 | 054 1.10 2.70

50 L2 000 001 001|013 025 057 | 090 1.83 4.60 | 209 4.88 13.67
L5 001 001 002 | 021 039 091 | 1.12 234 634 | 244 566 16.24

L1 000 0.00 000 | 000 000 000| 010 020 0.45| 058 1.14 2.79

48 L2 000 001 001|014 026 058 | 1.00 1.88 463 | 224 496 13.85
L5 001 001 002 | 024 041 095 | 1.25 237 6.36 | 267 590 16.19

L1 0.00 0.00 000 | 0.00 0.00 000 | 012 020 046 | 068 120 284

46 L2 000 001 001 | 016 028 0.60 | 1.15 207 479 | 251 516 14.36
L5 001 002 003|026 044 099 | 143 255 657 | 3.06 6.11 1655

L1 0.00 0.00 000 | 0.00 000 001| 014 023 049 | 083 135 2094

44 L2 000 001 001|021 032 064 | 143 232 520 | 304 547 1532
L5 001 002 003|033 050 103| 1.77 295 682 | 368 6.65 17.38

L1 000 0.00 000 | 000 000 001| 017 030 054 | 1.06 157 3.16

42 L2 001 001 001|029 041 072| 1.88 277 552 | 378 6.44 16.41
L5 001 002 003 | 045 064 114 | 235 333 7.40 | 460 7.72 1854

L1 000 0.00 000 | 001 001 001| 026 040 064 | 1.53 193 3.60

40 L2 001 001 002 | 044 056 089 | 2.64 355 6.38 | 509 7.69 18.64
L5 002 003 005|070 091 143 | 332 433 831|591 901 2045

L1 000 0.00 000 | 001 001 002| 047 062 088 | 228 281 456

38 L2 002 003 003|074 086 122 | 38L 478 7.80| 742 972 21.18
L5 004 006 008 | 1.16 141 1.86 | 497 6.02 9.99 | 805 11.43 23.58

L1 000 0.00 000 | 003 004 005| 095 1.07 1.36 | 3.60 435 6.30

36 L2 005 0.07 009 | 1.39 151 191 | 628 7.28 10.89| 11.65 13.68 25.61
L5 011 015 0.18 | 201 227 284 | 7.64 898 13.70| 11.82 16.12 27.90




Table 2.4: Cumulative Cycle Slip Error Correlation Coe cient
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C=No [dB-Hz] | S1IT1 S1T2 SI1T3| S2T1 S2T2 S2T3| S3T1 S3T2 S3T3| S4T1 S4T2 S4T3
. L1, L2 | - - - 1 004 003 002| 004 008 016 008 011 026
Noise |1 |5 - - - 0.02 0.00 0.00| 005 0.07 014 | 005 0.12 0.25
Free > |5 | 040 045 043 | 055 056 058 059 061 068 | 059 065 0.72
L1, L2 | - - - 1 004 005 00l| 005 010 0417 | 007 014 028

50 L1,L5 | - - - | 001 001 002 005 007 016 | 005 012 027
L2,L5 | 0.32 040 040 | 042 048 054 | 049 057 066 | 051 062 0.71

1,2 | - - - | 004 004 002 005 009 017 | 006 014 0.28

48  L1,L5 | - - - | 002 001 002| 004 007 015| 006 011 0.27
L2,L5 | 0.30 0.37 040 | 037 045 052 | 045 054 065 | 047 0.60 0.70

1,2 | - - - | 003 006 003| 005 009 016 | 006 013 0.29

46  L1,L5 | - - - | 000 002 002|005 006 016 | 005 010 0.27
L2,L5 | 027 033 037| 031 040 050 | 038 050 064 | 041 056 0.70

1,2 | - - 004 | 004 006 003]| 004 007 016 005 0.13 029

44  L1,L5 | - - 000|001 003 001| 006 006 015 | 0.06 0.11 027
L2,L5 | 019 027 033| 023 034 046 | 030 044 061 | 034 052 0.68

L, | - - 003 | 003 006 003]| 004 007 016 | 006 0.12 0.29

42  LL,L5 | - - 0.00]| 000 000 0.03| 004 005 015 | 0.04 0.09 028
L2,L5 | 017 021 028 | 017 027 040 | 025 0.38 058 | 027 046 0.66

L1, L2 | - - 003 ] 002 004 003]| 003 006 016 | 004 0.13 028

40 L1,L5 | - - 002|001 003 003|003 005 016 | 003 008 027
L2,L5 | 012 013 018 | 010 019 0.34 | 017 029 052 | 018 0.39 0.64

L1,L2 | 0.00 0.00 001]| 003 001 003| 002 005 015 004 013 0.29

38 L1,L5 | 0.00 0.00 003| 002 000 003|001 003 015| 002 0.09 0.28
L2,L5 | 0.07 0.06 011 | 007 012 025| 009 019 045 | 0.14 0.32 0.60

L1,L2 | 0.00 003 001]| 000 001 001 001 005 014 | 004 010 0.29

36 L1,L5 | 0.00 0.00 002| 003 003 002| 000 005 016 | 001 011 0.29
L2,L5 | 0.06 0.05 004| 002 005 017 | 007 0.14 039 | 009 027 0.56




Chapter 3

Occurrence of Challenging Cycle Slips in Real-World Data

3.1 Introduction

In Chapter 2, we provided a characterization of cycle slips that occurdue to the combined
e ects of phase transitions and noise. In this chapter, we will take a toser look at cycle slips
occurrence due to these e ects in actual GPS scintillation data sts. In particular, we look at
the Ascension Island and Hong Kong scintillation datasets containing fadenduced cycle slips that
challenge typical detection and repair algorithms. For the rst dataset, we observe carefully de-
trended phase records from multi-frequency GNSS signals and attemptio manually interpret the
occurrence of cycle slips. This process provides valuable igit into the challenges and limitations
of cycle slip detection. In our work, we utilize high-rate (100 Hz) phaseand intensity measurements
to interpret the many and frequent cycle slip occurrences dued di ractive ionosphere scintillation.
We show how these slips can occur over the course of 0.5-1 seconds orgenand how sometimes
several cycle slips can occur in the span of less than a minute. Witthe second dataset, we apply
and assess the performance of two cycle slip mitigation techniquesdm [20] and from [12], which
is an adapted version of the cycle slip ltering algorithm originally presented in [85]. Although we
are able to manually identify many cycle slips using these high-rataneasurements, as we will show,
these techniques struggle to estimate slips correctly.

In the next section, we discuss the geodetic detrending techgue we apply to the real-world

scintillation datasets in order to reduce the e ect of non-dispersive phase components. We also

° The content of this chapter is largely adapted from the conference papers in [11], [9], and [12].
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discuss additional background on di erent phase combinations and their arying sensitivities to

cycle slips. In Section 3.3, we introduce motivating examples of dgefade-induced phase transitions
during strong scintillation and multipath. In the Section 3.4, we int roduce a triple-frequency cycle
slip detection algorithm from [20] and assess its performance on the Hong Korggintillation dataset.

In the Section 3.5, we introduce the algorithm from [12]. Finally, we pravide concluding remarks
and summarize the main challenges associated with cycle slips undéarsh signal conditions in
Section 3.6. Overall, the purpose of this chapter is to serve as motivatin for our development of

yet another approach to cycle slip mitigation in chapters 4 and 5.

3.2 Background

3.2.1 Geodetic Detrending

When introducing the GNSS code and carrier phase measurements meld from Section
1.2.2 in Chapter 1, we discussed the relative contributions of various lpase components. In order
to better see di raction-induced cycle slips in the phase measwements, it is important to remove
the large contributions from the geometry term G. That is why many cycle slip algorithms adopt
the geometry-based approaches that utilize information from other receied satellite signals in
order to resolve the non-dispersive signal phase component ([15], [59]ndeed, optimal cycle slip
mitigation techniques should use all available information, including knowledge of non-dispersive
phase components. Therefore, we use the relatively straightforward geletic detrending technique
to remove a majority of non-dispersive phase components from our signal Originally applied in
[44] in order to isolate scintillation e ects in 1 Hz data, this method is explained in detail in [54].
Here we outline the essential details.

The rst step is to remove all signal components that can be estimated gpriori. Since we are
dealing with a stationary antenna, the satellite range can be obtained by ging the known receiver
antenna position and precise orbits supplied by the International Gedetic Service (IGS) [48]. We

also estimate the satellite clock and antenna phase variations using@S products. We use the
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Figure 3.1: Shows the overlay of derivative of L1/L2 IF combinations of carrie phase. An overall
linear trend has been removed for clarity. Each color corresponds to aiérent PRN and the white
line shows the derivative of receiver clock variation that is obtainal by averaging the IF derivatives.

simple Hop eld model for troposphere delay estimation, which shouldbe accurate to within several
centimeters [39]. Combining these factors gives an estimate for the nedispersive component G
in egs. 1.4 and 1.5) except for the receiver clock term.

The next step is to estimate the receiver clock variations. Folloving the approach in [44], we
rst remove the non-dispersive components estimated in the rst step from each of the code and
carrier phase measurements and for each satellite (in our case, we catesied only GPS satellites).
Then we take the IF combination of the L1 and L2 carrier phase measuremeniswhich at this
point should only contain the receiver clock variations, carrier bias,cycle slips, and noise. Tak-
ing the discrete derivative of the IF combination eliminates the carier bias and turns cycle slips
into outliers. By averaging the IF combinations across all satellites ve obtain an estimate of the
derivative of receiver clock variations. Figure 3.1 illustrates this process applied to the Ascension
Island scintillation dataset that was introduced in Section 1.4.0.1, with the white line showing the
estimated clock variation derivative. We then integrate this result to obtain the nal receiver clock
variations and remove them from each of the code and carrier phases to obtaiour nal detrended
observations. Note that these observations will still contain all variations due to the ionosphere,

but the non-dispersive components have been removed at sub metével accuracy.
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3.2.2 Linear combinations

As we saw in Chapter 1, given a set of code and carrier phase observations wan produce
various linear combinations with desirable properties, which have lben a popular tool in the de-
tection of cycle slips. In particular, we discussed how geometry- ahionosphere-free combinations
are useful when it comes to reliable cycle slip detection. Howevgit is also important that linear
combinations used for cycle slip detection are actually sensitive taycle slips that occur. Table
3.1 lists the coe cients for various measurement combinations for GPSL1, L2, and L5 signals,
including 4 new combinations that we did not introduce in Chapter 1 but which we will use for the
cycle slip detection algorithm in Section 3.4.

The rst three new combinations, which we denote Y1, Y|, and Y5, are code and single-
carrier GF combinations. In each combination, the coe cient for the respective carrier is equal
to one while the other two carrier coe cients are zero. Meanwhile the code phase coe cients
are optimized to produce a combination that cancels the carrier phase gemetry component while
minimizing the overall combination variance given by Equation 1.9. The ombinations allow for
detection of large cycle slip amplitudes on individual carriers, and pay a role analogous to the
HWM combination that was used in the TurboEdit algorithm from Chapter 1 Section 1.2.4. The
fourth new combination is a GF carrier-phase-only combination denoted CF(Lll);LZ;w. Its coe cients
are chosen such that they maximize the ratio between a 1-cycle slip othe L1 signal and the
noise variance corresponding to the time-di erence observation GF(Lll);LZ;LS = GF (Lll);LZ;L5(ti)
GFY). ,..s(ti 1), which is assumed to be twice the variance of the undi erenced olevation. This
combination is designed to be sensitive to slips in the L1 signal that a& not easily identi ed in the
rst signal.

In [20], the authors assume independent noise with code noise standadkviations p, =

p, =0:15m and p, = 0:1m (where the lower code noise on L5 corresponds to its higher chippin
rate) and carrier noise standard deviations |, = |, = L, = 0:002m. While signals under

harsh conditions, and under ionosphere di raction speci cally, are sibject to higher levels of both
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Name Type Coe cients

Yi1 GF | -0.235 -0.235 -0.529 1.000 0.000 0.000
Yo GF | -0.235 -0.235 -0.529 0.000 1.000 0.000

Y5 GF | -0.235 -0.235 -0.529 0.000 0.000 1.000
GIFL1;12:5 | GIF 0.215 -1.215 1.000
GF%’;LZ;L5 GF 1.000 -0.370 -0.630
GF?. ,.s | GF 1.000 -2.780 -1.780
IFLi:2 IF -2.546 1546 0.000
IFL1;5 IF -2.261 0.000 1.261
GFL1;2 GF 1.000 -1.000 0.000
GFL1:5 GF 1.000 0.000 -1.000

Table 3.1: Various linear combinations of observables useful for triplerequency cycle slip detection.

code and carrier phase noise, for consistency we will use their valsién when implementing their
algorithm in Section 3.4. We also note that since the proportion of these nois amplitudes will
be similar under diraction, the coe cients in Table 3.1 would be app roximately the same for
combinations optimized for ionosphere scintillation anyways.

In order to assess the sensitivities of these combinations to di ent cycle slips, a useful
metric is the ratio of the magnitude of the cycle slip e ect to the noise standard deviation for a
particular combination. This is essentially the slip signal-to-noiseratio (SNR). Let z 2 Z2 be
the vector representing the cycle slip amplitude at a given epocHor the three carriers, and let
b = diag( 1; 2; 3) z be the bias vector introduced into the carrier measurements aftera slip
occurrence. Thenjc'bj is the magnitude of the cycle slip e ect on the linear combination with
carrier coe cients ¢ and the standard deviation of noise is provided by Equation 1.9 from Chapte
1. We can then compute the SNR metric as the ratio of these values. To dohis, let us consider
potential slips at a given epoch of up to one cycle in amplitude. This dbws for 3 possible outcomes
(-1, 0, +1 cycle) on each of the 3 carriers, for a total of 8 = 27 possible combinations. Out of
these, one is the no-slip case (0, 0, 0) and half the remaining cases are wedant since they are
additive inverses. This leaves 13 one-cycle combinations.

Table 3.2 lists each combination's SNR measure for each of the 13 possiblegie-slip scenar-

ios. Blank cells indicate when a combination is entirely insensitie to a slip. While the assumed
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Yi1 26 26 26 2.6 2.6 2.6 2.6 2.6 2.6
Y2 3.4 34 34 3.4 3.4 3.4 3.4 3.4 3.4
Yis 3.5 35 35 35 3.5 3.5 3.5 3.5 3.5
GIF 125 | 03 129 805 934 93.1 80.2 132 106.3 673 26.1 173.6 186.5 160.7
GF(Lll);LZ;LE 245 76.8 403 36.5 120 64.8 101.3 113.3 1416 178.1 28.3 485 105.2
GF%.,.5 | 1366 27.6 70.8 98.4 38.2 658 1642 1260 93.3 191.8 327 60.2 5.1
IFL1:2 18.0 813 18.0 63.4 81.3 63.4 1447 813 1447 63.4 1447 18.0
IFL1:15 21.0 831 831 21.0 62.1 621 83.1 1452 1452 621 21.0 1452
GFL1:2 19.1 67.3 191 86.3 67.3 86.3 153.6 67.3 153.6 86.3 153.6 19.1
GFL1:5 228 67.3 67.3 228 90.1 90.1 673 157.4 1574 90.1 228 157.4

Table 3.2: Shows the sensitivity of each combination in Table 3.1 to di eent cycle slip amplitudes.
Di erent colors are shown to help indicate the sensitivity, with yellow being largest and purple

being smallest.

noise levels are too low to correspond to severe scintillation contibns, the values in Table 3.2 still

provide some important insights into the limitations of cycle slip detection. For instance, we see
that all combinations using code phase Y1, Y 2, and Y 5) have fairly low SNR metrics compared
to combinations only using carrier phase. Also, the SNR metric for L1 slig is generally much
smaller than those for L2 and L5. This is due to the L1 signal's shorter wavedngth and the wider
spectral gap between L1 and the lower-frequency bands. In the nextestion, we will use the GIF

combination (listed as GIF 1. 215 in tables 3.1 and 3.2) to assess slip occurrences in the scintillation

time series.

3.3 Analysis of challenging cycle slips

We want to assess the occurrence of this slips, and in doing so relatkem back to our
prototypical examples of canonical fades in Figure 2.5 from Chapter 2. Recalhat there were 3
cases: A) a canonical fade occurs but there is no cycle slip, B) a canaail fade occurs and there is
a phase transition that leads to a cycle slip, C) a canonical fade occurduring which noise appears

to induce a cycle slip. We refer to these three prototypical examfges when analyzing the phase

transitions in the real data.
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Figure 3.2: Examples of L1/L2 and L1/L5 IF combinations and the L1/L2/L5 GIF combination
using 100 Hz carrier phase measurements from the Ascension Island datas@&ottom panel shows
a zoomed-in portion of the most disturbed period.

3.3.1 Ascension Island Scintillation

We rst consider the 2013-03-10 Ascension Island scintillation event for GIS PRN 24, which
we introduced in Section 1.4.0.1. Figure 3.2 shows the IF and GIF phaseombinations computed
using the detrended 100 Hz phase measurements. The discrete jumipsthese combinations indicate
the presence of diraction-induced cycle slips. The bottom panel ofFigure 3.2 shows a zoomed-
in portion of the most intense diractive e ects around minutes 75 to 80. The jumps in these
combinations show multiple cycle slips occurring each minute.

Figures 3.3 and 3.4 show examples of canonical fades that occur on the L2 and Ligsals.
Based on analysis of the GIF combination, there are no cycle slips causday ionosphere di raction

in any of these examples, and for the most part the phase behavior correspds well with that shown
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in simulation scenarios A and B from Section 2.1.1. Figure 3.5 shows a (pramably) noise-induced
cycle slip occurring in the middle of an otherwise canonical fade. Tis behavior is very similar
to that of simulation scenario C. The instantaneous nature of the phase tansition during this
noise-induced cycle-slip helps distinguish it from full-cycé transitions corresponding to simulation
scenario B. The GIF combination during these events remains relatiely constant before and after
the fades, indicating the absence of full-cycle phase transitions.

Figure 3.6 show an example of a full-cycle transition that occurs dumg deep fades in the
L2 and L5 signals. Though there is clearly a bias discrepancy among the deinded phases, it is
not immediately clear which of the fading signals underwent a full-gcle transition. The average
value of the GIF combination before versus after the jump event indiates a jump of about 0.29.
Referencing Table 3.1, we deduce that this jump corresponds to a flitycle transition in the L2
signal since 1215 |, = 0:297. Figure 3.7 shows another example of this behavior. Beginning
with weak and canonical fades on all three signals, the L2 and L5 signals experice additional
weak fading 1.25 seconds after their initial fades. Again, the detrendeghase biases imply a full-
cycle phase transition. There is a jump in the GIF combination signal alue from before and
after the fade event of around 0.25, corresponding to a full-cycle transibn in the L5 signal (since
1 15 = 0:255). The detrended signal intensity for L5 only shows around -10 dB fadingvhen
this transition must have occurred. This corroborates our nding from Chapter 2 that weak to
moderate fades may be as important as very deep fades when it comes toetloccurrence of cycle
slips in very strong scintillation.

Figures 3.8, 3.9, and 3.10 all show examples of consecutive deep fades, mostl the L2
and L5 signals. Just as in each of the previous examples, whenever modtely sharp fades occur,
the carrier phase exhibits an approximate half-cycle phase transitin. For each of these examples,
parsing out the true phase behavior is an exercise in distinguishigp canonical half-cycle transitions
from those that are actual full-cycle transitions. The phase behavior fom the examples in Figures
3.10 and 3.9 are particularly messy in this regard. The GIF combination prees to be a useful

tool in identifying the occurrence and culprit of some full-cycle phase transitions. However, these
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Figure 3.3: Example of canonical fade behavior occurring on L2 and L5 signals at aund 76311
seconds. L2 shows a sharp half-cycle phase change, corresponding tawdation scenario B, whereas
L5 shows a slightly more gradual transition similar to scenario A. The GIF combination bias stays
the same before and after the fade, indicating no cycle slip (phase @nsition) occurred.

examples also show how the jumps in average GIF combination values aresither immediate nor

easy to measure due to persistent corruption by di ractive uctuat ions.

3.3.2 Hong Kong Scintillation Example

We now consider Hong Kong scintillation dataset that we introduced in Sction 1.4.0.2.
After applying the geodetic detrending technique from Section 3.21, we computed the GIF phase
combination and the dual-frequency IF combinations of phase. In [63], theauthors show how the
di raction e ects are somewhat suppressed in ionosphere-free combations of carrier phase. This
makes identi cation of cycle slips easier, especially when usingery-high-rate (100 Hz) carrier phase
measurements. We performed a manual cycle slip detection and corréen procedure by iteratively
identifying and removing cycle slips from the three 100 Hz phase measements. Identi cation

of slips was done by observing and interpreting the behavior of jumpsn the GIF, IF, and GF
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Figure 3.4: Example of a canonical fade on the L5 signal. The behavior is sinail to that of
simulation scenario B. Similar to the example in Figure 3.3, there wee no full-cycle transitions
during this deep fade.

combinations during fades in signal intensity, as discussed in theakt section. The result of this
procedure is summarized in the bottom panel of Figure 3.11, which showthie now relatively smooth
IF combinations that have been rid of large jumps. We found 18 slips on L1, 53 o2, and 78
on L5. These results are roughly consistent with the cycle slip rates & found in Chapter 2. We
acknowledge that there are likely errors in this procedure, and in grticular cycle slips occurring
on all three signals simultaneously are extremely di cult to detect in these IF combinations (e.g.
see Table 3.2) or during ionosphere di raction in general. Neverthelesghe residuals of the IF and
GIF combinations in Figure 3.11 give us some con dence that most of the cyd slips are correctly
identi ed, and that the results of this procedure are adequate for assssing the performance of the

di erent cycle slip mitigation methods in the rest of this chapter .
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Time | Amplitude

7554/ 0 O -1/7849(0 1 0(810/ 0 1 1|8893/ 0 0 1
7558 0 -1 -1|/7915/ 0 1 1(834| 0 1 1|8898|1 0 O
7582 |-1 -1 -1|/7958|/ 0 O 1[853/ 0 1 1|89%01| -1 0 O
7616 | 0 O -1/8285(0 1 1(888 0 0O 1|8913|] 0 0 1
7636 | 0 O 182990 -1 0(894| 0 1 1|8948| 0 1 O
76381 0O 083210 -1 -1{899 0 1 0[89%7|0 -1 -1
7640 1 1 183370 O -1|8712|-1 0O 0[89%2| 0 0 1
7647/ 0 O -1/8341(0 O 1(8723]/ 0 -1 -1/8975|0 1 1
7662 | 0 O -1/8342( 0 O 1(8732/ 0 1 1|8979| 0 0 1
7673 0 -1 -1/8389(0 0 -1(8743| 0 -1 -1{8995| 0 1 1
7689 |-1 1 0|8391(-1 0 O0(8761| 0 O -1/9016| 0 O 1
7695| 0 -1 18442/ 0 1 18766/ 0 1 1]9038|0 O -1
7708/ 0 O -1/8463/ 0 O -1(8773|] 0 0 1]9047| 0 1 1
7710/ 0 1 0 |8466( 0 O 187800 1 1|99 |0 0 1
7715/ 0 0O -1/8472{ 0 -1 -1(8784| 0 0 -1/9123| 0 -1 O
7730/ 1 O 084810 -1 -1/800| 0 1 1]9161|0 -1 -1
77321 0 1 0803/ 0 -1 -1/834|0 0 -1{9177{ 0 -1 -1
7733/ 0 O 185211 O 0(848/ 0 0 -1|9179|1 O O
77570 -1 -1/8538|0 -1 -1/8850|-1 0 0]9189| 0 -1 -1
776411 0 08400 1 1(872/0 -1 -1/9207|0 1 1
78150 -1 08540 -1 -1/8877{0 0 19247/ 0 -1 -1
78170 1 18630 1 1(883/1 0 0]9305/0 1 1
7818 0 O -1/8585(-1 O 08889 0 -1 -1{9398| 0 O -1
78210 1 1/8589(-1 0O -1(8890| 0 -1 -1/9432{ 0 0 1
78450 -1 085920 O 1(8892| 0 1 1|940({0 0 -1

Table 3.3: Manually detected cycle slip occurrences. Occurrencémes are measured in seconds
from 11:00 UT.
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Figure 3.5: Examples of canonical fades on the L5 signal. The rst canonical fadat 76485 seconds
does not show a corresponding change in the GIF bias, and presumably raycle slip has occurred.
The second fade appears to show a noise-induced cycle-slip, copesding to simulation scenario

D. We see a corresponding drop in the GIF combination bias.

3.4 Cycle Slip Mitigation Performance: De Lacy 2012

Here we assess the e ectiveness of cycle slip mitigation using thegarithm presented in [20].
We test the algorithm using 1 Hz data, for which it was designed. It makes ge of several of the
linear combinations of observables from Table 3.1. Just like we saw for th@urboEdit algorithm in
Chapter 1, a common approach in many cycle slip algorithms is to rst use boh code and carrier
phase measurements together in order to identify large cycle slipsAny larger cycle slips (more
than 2 cycles) are most likely caused by receiver processing ersoor loss-of-lock and can be easily
detected in such combinations. Once these large jumps are identid carrier phase combinations
are then used to detect and correct smaller slips. This techniqués known as cascading detection
and is used by many other authors including [50], [102], [2], [14]. In this sdion, we will rst

brie y describe the algorithm steps, then we will show and assesds performance in detecting and
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Figure 3.6: Using detrended phase and signal intensity, shows an intesting example of triple-

frequency carrier behavior where it it is not clear from the individual phase records which signals
(if any) accrue full cycle transitions and which just show canonical &de behavior. Careful measuring
of the change in the average GIF combination value before and after the fadevent reveals a jump

of around 0.29, suggesting that a full-cycle transition occurred in the L2signal only.

estimating cycle slips in the Hong Kong dataset.

34.1 Algorithm Description

The De Lacy algorithm uses theY|1, Y12, Y15, GIF1.12:15, GF(Lll);LZ;LS’ and GF(Lzl);LZ;L5 com-

binations from Table 3.1 and compares the magnitudes of their epoch-wisdi erences (e.g. Y; =
Yi(t) Yi(t 1)) to a threshold in order to detect slips. Similar to the Turboedit algorithm we
assessed in Chapter 1, for each detection the authors suggest a threshold (i.e. 4 times the stan-
dard deviation of Y;). The steps to detect and estimate cycle slips are performed at eachpoch

of time-di erenced combinations:

(1) The time-di erenced combinations Y, 1, Y.2, Y.s are each tested for large slip occur-

rences using a threshold of 0.41 meters far = 1;2;3. If a slip is detected in any of the
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Figure 3.7: Using detrended phase and signal intensity, shows modemtcanonical fades on the L1,
L2 and L signals. There is a post-fade discrepancy in the L2 and L5 signals ggesting a possible
full-cycle transition. A change in average GIF combination value of around0.25 before versus after
the fades suggests that the L5 signal underwent a full-cycle transitin.

combinations, move to step 4.

(2) The time-di erenced combination GIF |1.2:5 IS tested against a threshold of 1.8 cm. If

a slip is detected, move to step 4.

(3) The time-di erenced combination GF (Lll);LZ;LS is tested against a threshold of 1.7 cm. If a

slip is detected, move to step 4.

(4) When aslip is detected, rstits approximate magnitude is estimated as zx = round( Yx= k).

At this point, the residual slip magnitude is assumed to be between 2 cycles.

(5) Similar to the TurboEdit algorithm, the remaining joint cycle sli p amplitude z is then
chosen to minimize the residual in a set of time-di erenced phaseombinations. In par-
ticular, the algorithm searches over the joint slip amplitudes for the one that minimizes

J GF L1:2) + ] GF L1:5]).
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Figure 3.8: Using detrended phase and signal intensity, shows consdiu¢ canonical fades on L2
and L5 signals, as well as a canonical fade on the L1 signal. The rst fade in L5 co@ides with a
jump in GIF combination value of 0.25, indicating a positive full-cycle transition, while its second

fade shows a downward half-cycle transition. The L2 signal shows twoanonical fades in the same
downward direction.

(6) The following pairs of joint amplitudes cannot be resolved by the two combinations in Step
Sif( 2 2 2)( 2 Lo f(2 L 252209 f(2142):( 2 25 1)gf(222);( 2 1 1)g
Therefore, if the estimated amplitude lies in one of these pairs, te sixth and nal combi-
nation GF(l_zl);Lz;l_5 is used to distinguish between the two outcomes. Speci cally, tie joint

amplitude from the corresponding pair that minimizes j GF (L21);L2;L5j is chosen.

3.4.2 Analysis

Figure 3.12 shows the residuals Y; along with the 4 thresholds. Additionally, residuals
corresponding to cycle slips in the truth reference are encireld. There is a high false-detection rate
for the teston Yj, i =1;2;3. Notably, during manual cycle slip adjustment presented in the last

section, all identi ed slips were of 1 cycle in amplitude, though there were consecutive slips over a
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Figure 3.9: Using detrended phase and signal intensity, shows consde fades for L2 and L5
signals. The GIF combination show a jump in average value of around 0.50 beferversus after the
fade, indicating two full-cycle transitions in the L5 signal. The half-cycle transition behavior on
the L2 signal is consistently downward while the full-cycle transtion behavior of the L5 signal is
consistently upward.

few seconds that would appear as multiple-cycle slips in lower-ratelata. However, for 1 Hz data,
this means that all detected cycle slips in our manual truth refererce are considered as small slips.
This further implies that no cycle slips should have been deteted when using these combinations
that include code phase observables, and yet 112 slips for L1, 143 for L2, and 153 fob were
detected using the standard thresholds. After accounting for the cgle slip occurrence from the
truth reference, this corresponds to false detection rates of 91, 79, an60 percent, respectively.
There is clearly increased noise due to ionosphere variability and diaction. While the
thresholds could be adjusted to account for ionosphere variability and draction uctuations, this
would mean that if there were any larger slips some of them may be misseduring detection using
code phase. Additionally, it is interesting to note that it is not just diraction e ects on carrier

phase that are causing increased noise in these observables, but thdtdre is also a large increase
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Figure 3.10: Using detrended phase and signal intensity, shows conseive deep fades mainly for
the L2 and L5 signals. The rst fade coincides with canonical upward half-gcle transition of the
L2 signal. After accounting for its noise-induced cycle-slip, the L5 mgnal also shows a canonical
downward half-cycle transition. For the second fade, the L2 signal show a downward full-cycle
transition with a corresponding change in average GIF combination valuewhile the L5 signal shows
a canonical upward half-cycle transition.

in uctuations and errors in the code phase measurements. This can beeen more clearly in Figure
3.13, which shows detrended GF combinations of dual-frequency codéhpse pairs. In this case, we
are unsure of the actual origin of increased code phase uctuations and wlieer they are directly a
result of diraction e ects on the signal or some receiver processingartifact such as carrier-based
smoothing of the code phase measurements. In either case, the ieased code phase noise is clearly
associated with the ionosphere di raction.

The next stage of detection considers GIF ;.2,.5 and GF (Lll);Lz;LS, which are shown in
Figure 3.14 along with their 4 thresholds. Additionally, residuals corresponding to jumps in
the manual truth reference are encircled, similar to Figure 3.12. It & interesting to note how
di erent slip combinations tend to lie along certain subspaces of thgoint GIF 1;10,.5; GF (Lll);Lz;LS

residual. This hints at more optimal testing procedures for these derent slip combinations, as
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Figure 3.11: Shows examples of L1/L2 and L1/L5 ionosphere-free combinations and thiel/L2/L5
geometry-ionosphere free combination using 100 Hz carrier phase measuremts. Top and bottom
panels show the combinations before and after manual cycle slip correon.

discussed in [81] or [3]. We will explore this idea more in Chapter 4. Fothis method, a cycle
slip is detected if the threshold is exceeded for either GIF ;12,15 or GF (Lll);LZ;LS' This detection
scheme achieved 100 percent detection rate for epochs containing ¢gslips in the truth reference.
However, similar to the issues faced during large slip detection, & again see large false-detection
rates. This method determined that there were cycle slips at 1216 epchs, thus yielding a false-
detection rate of 91 percent. This false detection rate is reduced wén neglecting epochs where
estimated slip amplitudes are all zero, which we discuss next. Ewestill, such high rates of false
detection are ine cient, especially for when it comes to algorithms that use detections to reset
carrier ambiguities.

In the last step, slip amplitudes are estimated using the three derent GF phase combina-

tions. Because these combinations use carrier phase only, they shoutrmally be precise enough

to reliably estimate the cycle slip amplitudes on all three signals with high con dence. For the case
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Figure 3.12: The residuals of Y, i = 1;2;3, along with circles indicating the occurrence of an
actual cycle slip in the manual truth reference for the correspondig signal (L1=1, L2= 2, L5= 3).
Dashed lines indicate slip detection thresholds, and overall we semany missed detections and false
alarms for these combination residuals.

of ionosphere scintillation, however, the ionosphere variation and diraction noise will especially
impact these combinations, and so we expect poor estimation result€igure 3.15 shows the slip es-
timated along with slip amplitudes from the truth reference. Overall, 594 of the epochs that tested
positive for cycle slips resulted in an estimate of no slip on all thre signals. The false-detection
rate for epochs containing cycle slips goes down to 44 percent if wesdount their occurrences.
While there are many epochs with 2 cycle amplitude slip estimates, they are much less numerous
than the 1 cycle slip amplitudes. Their occurrence also correlates fairlyvell with the slip occur-

rence from the truth reference. Careful inspection of the slip amptudes shows that often +1 or
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Figure 3.13: Detrended GF combinations of the L1/L2, L1/L5, and L2/L5 code phase observabds,
revealing a substantial increase in code phase noise and uctuationsuiling the scintillation event.

1 cycle slips are estimated simultaneously on all three frequenae In fact, this was the case for
499 epochs, or nearly 89 percent of the detected jump epochs with narero slip amplitudes. The
authors in [20] acknowledge the relative insensitivity of GF combinatbns to simultaneous slips in
the same direction on all three signals. Indeed, this may be the mosthallenging aspect of small

slip detection during ionosphere di raction.

3.5 Cycle Slip Mitigation Performance: Filtering Algorithm

Work from [85] presents a Kalman Iter algorithm to mitigate cycle slip occurrences for
signals re ected o water surfaces. The state-space algorithm adapts itgain based on uctuations
in signal carrier-to-noise density ratio C=Ng while estimating the occurrence of integer-cycle jumps
due to cycle slips. Both re ected and scintillating signals exhilit interference and deep fading due
to scattered signals, and as such it is natural to apply this algorithm (with some modi cation) to
scintillation signals and consider its performance. Here we develop anassess an adaptation of the
algorithm from [85], which we originally presented in [12], to apply to triple-frequency scintillation
data. In the next section, we describe the algorithm. Then we assestsiperformance when applied

to the Hong Kong dataset. Overall, we will nd this algorithm has better p erformance than the
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Figure 3.14: Residuals GIF 1,12, 5 plotted against GF (Lll);Lz;Ls along with their 4 thresholds
(dashed lines). Residuals corresponding to actual slips in the maral truth reference are encircled,
similar to Figure 3.12
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Figure 3.15: Estimated cycle slip amplitudes at each epoch for the metid outlined in [20] as well
as the amplitudes from the truth reference (shown with circles)
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De Lacy method presented in the last section, but it still produces many incorrect slip amplitude

estimates.

351 Algorithm Description

Following the development in [85], we consider a state-space formulamn for lItering the
phase measurements in order to mitigate the impact of cycle slips. Weollect the geodetically

detrended phase for various signals into a measurement vector:

.
y(ti) = () v k() (3.1)

We consider a state vectorx consisting of the ltered phase residuals ¢, along with their rate

estimatesr ¢,:
x(@)= o) o k() roat) ror k() 3.2)

With these de nitions for y and x, we construct the measurement model:

y(ti) = Hx (ti) + b(ti) + v(ti) (3.3)
where H is given by 2 3
1 ::: 00 ::: 0
H = E : : (3.4)
0 1 0 : 0
T
and b(tj) = 1z1(t) i1 kzk(tj) is an estimate of the bias due to cycle slips with ¢,

as the wavelength corresponding to thei-th signal. We also assume the measurement noise

variances are adjusted based on signal C/jt

p o 1 1
)= SN T 2T CiNg () (3-5)

where C/N, is estimated as
j s(t)j?

(3.6)
l%l;f T

CIN o(t;) =
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This is assuming we have access to the complex correlation outputs (as introduced in Section
1.2.1 of Chapter 1) from our receiver. The nominal noise variance,%, can be estimated from the
amplitude variance of s(tj) during ideal conditions that occur either before or after scintillation
or multipath occurrence.

The discrete-time state dynamics model is given by:
X(tks1) = Fx (i) + w(ti) (3.7)

where we have the discrete-time transition matrix:

2 3
1 ::: 0T ::: 0
O :::'1 0 ::: T
F= (3.8)
O .. 0 l .. O
0 0 O 1

and wherew (t;) N (0;Q). Our adapted dynamics model leads to a slightly di erent discrete-time

process noise covarianc€ than that in [85]. We express it using auxiliary matricesQ and Qg; :

Q =diag 2 ;i1 2, (3.9)
2 3
&+ 11 f &+ 1w {
Qail :g : (3.10)
&+ M 1f i &t mowm
2 3
TQ +5Qa %Qq
Q=9 gel Zeelf (3.11)
2
Qai TQai

The parameters 2 , é and ,2 are the values for the power spectral densities of the respective

I
white-noise processes. The noise associated Withzi accounts for unmodeled and uncorrelated
errors amongst the di erent signals, while the noise associated with 2, and |2 come from random

variations in the unmodeled non-dispersive and refractive ionosplre components that are present
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in all signals. The covariance matrix Q must be tuned to achieve the best possible cycle slip
mitigation. If its values are too large, the Iter will be too forgiving to large phase variations
and will not be able to distinguish cycle slips. If its values are toosmall, the Iter may become
overcon dent and diverge. We performed a grid search of various combinébns of values between
0.00001 to 2 and selected those that produce the best performance for the HpiKong dataset in
the sense that it yielded the smallest number of slips in the resiting measurements (i.e. smallest
number of missed slips plus added slips). For the results prested in this the next section, we use
values of Zi =0:0001, 2 =0:00001, and 2 = 0:00005.

Having established the measurement and state dynamics models for ogystem, the remain-
der of the algorithm follows mostly standard Kalman Iter procedure. Th e one exception is the
estimation of the bias sequencé(tj), which is done using the propagated statex (t;) and mea-

surementsy (t;) as:

b(ti) = argmin pjjy (ti) Hx (t) bl (3.12)

Again, the values ofb are restricted to an integer number of wavelengths. The estimated tas b(t;)
is then subtracted from the measurement residual when updating.

Otherwise, a state estimation covarianceP (t) is propagated via:
P (ti1) = FPT(t)FT + Q (3.13)

and the remaining update steps follow:

K(t)=P (t)HT HP (t)HT + R(t)

(3.14)
xT(t) = x (4)+ K(G)(y(t) Hx (t) b)) (3.15)

P (t)=(1 K(t)H)P (t) (3.16)

3.5.2 Assessment

We apply the Itering algorithm to the Hong Kong dataset after decimating our measurements

to 20 Hz. We obtain estimates of the slip bias sequencexty) for each signal. These are plotted
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Figure 3.16: Comparison of truth reference of cycle slip bias sequencensus sequence estimated
during the ltering process for L1, L2, and L5 signals (o set for clarity). There are 15, 63, and 78
slips in the truth reference and 26, 89, and 90 jumps in the Iter estimate for the L1, L2, and L5
signals respectively. Of these, the Iter estimated 8, 35, and 36 of thdrue jumps correctly.
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Figure 3.17: Comparison of IF and GIF combinations of the carrier phase estimads from the Hong
Kong dataset before and after applying the ltering method.
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in Figure 3.16 along with the bias sequences for the truth referenceThe discrepancy between the
true and estimated bias sequences can be due to cycle slips that thiter fails to remove or that
the Iter erroneously adds into its output. In this case, for the L1, L2, and L5 signals there are 15,
63, and 78 slips in the truth reference and 22, 89, and 90 slips in the lIter stimate, respectively.
Of these, the lter estimated 8, 35, and 42 of the true slips correctly ar erroneously added 14, 54,
and 48slips. Note then that for this dataset the Iter adds more slips than it e ectively mitigates,
which raises some doubt as to its usefulness. However, some of theseded slips may be due to
rapid consecutive slips that were not included in the truth reference. For instance, between 43500 to
44000 seconds in Figure 3.16, all three phase bias estimates show occureswhere the estimated
bias jumps and then almost immediately returns to its previous value Due to the way we manually
identi ed slips over a window of observations, rapid consecutive kps that did not result in a net
bias were not always identi ed in the truth reference. Therefore we argue that the number of slips
added by the lter is moderately less than the reported number. After counting up the number of
rapid consecutive (i.e. less than 1 second apart) slips and removiniipem from the total, we arrive
at 8, 40, and 21 added slips.

An additional way to assess the removal of cycle slips is by observindhe IF and GIF carrier
phase combinations. Note again that since the non-dispersive phase compange were removed, the
IF combination should be mostly at, as should the GIF combination. Figure 3.17 shows the IF
(top panel) and GIF (bottom panel) combinations before and after applying the Itering algorithm.
While there are some new jumps in the ltered IF and GIF combinations when compared to the raw
versions due to added cycle slips, our qualitative assessment isdahthe phase combinations after
Itering appear more at overall. In particular, jumps in the GIF comb ination between 44500 and
45000 seconds have been signi cantly reduced. There are a couple beoa&l qualities of the ltered
output that we observe through these linear combinations: 1) the Itered phase is less noisy, and
2) many consecutive cycle slip occurrences have been removed the Iter. This second point can
be seen particularly by observing the GIF combination, e.g. around 43800 sends. The removal of

these rapid consecutive cycle slips may be bene cial to windovizased cycle slip detection methods
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that may otherwise struggle to deal with multiple slips occurring within one detection window.
Otherwise, the fact that falsely added more slips than it correctly mitigated clearly indicates the
need for a better algorithm.

Overall, when we consider the performance of this algorithm, it makes ense that it is only
able to mitigate some of the slip occurrences in the scintillation masurements. The Iter is designed
to \ Iter out" cycle slips by reducing its gain when the signal amplit ude fades. As such, any cycle
slips due to phase transitions that occur during deep signal fades arkely to be correctly Itered
out and estimated by the algorithm. On the other hand, in the last chapter we saw how strong
scintillation contains many phase transitions with shallow fading ampilitudes. Cycle slips due to
these phase transitions will not be as e ectively Itered out by the algorithm. In actuality, the
performance of this algorithm on a given dataset is highly dependent uponkhte tuning of its process
noise. Smaller process noise generally leads to Itering of more skp but if it is too small then the
algorithm will start introducing slips in order to accommodate variati ons in the actual signal phase
components. Recall that we optimized the tuning to achieve the besperformance for this particular
dataset in terms of total cycle slips present in the Itered measurenents. Even with the optimal
tuning we saw this e ect of added slips in the Itering results. Moreover, because the algorithm is
sequential, there is no way for it to recognize if the phase deviatios it observes are actually part of
the phase component dynamics (e.g. the refractive ionosphere phase) ibthey correspond to actual
phase transitions. This is particularly the case when phase transittns occur over a longer duration
or has a shallow fading amplitude, as we just discussed. Our main takeay from this assessment
is this: while the principles of Itering out cycle slips using an adaptive algorithm like the one
described here make sense, ultimately one needs a full window ofesurements surrounding a slip
to adequately assess its occurrence. This will be a key point that wtivates our work in Chapter 4

and Chapter 5.
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3.6 Summary and Discussion

In this work, we analyzed the occurrence of GNSS cycle slips assoagt with signal fading.
In particular, we looked at two datasets containing strong di ractive i onosphere scintillation. In
both datasets, jumps in the IF and GIF combinations clearly indicated the presence of cycle slips.
For the rst dataset from Ascension Island, we analyzed various examples ofanonical fades. We
showed how signal intensity and jumps in various linear combinations ophase observables allow
for identifying cycle slip occurrence. We applied this analysisto the second dataset from Hong
Kong in order to estimate a truth reference for cycle slip occurrace. A representative result of
our correction is shown in Figure 3.11, where any jumps in the IF and GIF ombinations are
essentially eliminated. Then we used this truth reference to asess the performance of two cycle
slip mitigation algorithms. The rst was the De Lacy algorithm: the single- epoch time-di erenced
cycle slip mitigation algorithm for triple-frequency signals that is described in [20]. Although the
algorithm showed a 100 percent detection rate, large false-detection ras seem to be a consistent
problem at each stage of the algorithm. Based on the detection results fromigure 3.14, we cannot
reduce this false detection rate very much without introducing missed detections. The second
algorithm was an adapted version of the Itering method from [85]. This algorithm showed better
results than those from [20], but still ended up introducing more cyle slips than it accurately
corrected, despite having chosen an optimal tuning of the algorithm'sprocess noise covariance. We
argue that the added slips in this case are due in large part to phase trangons with extended or
shallow fading that can occur during strong scintillation or multipat h, as we discussed in the last
chapter.

Observing the di erence residuals of the various linear combinatiols used in the De Lacy
algorithm provided some insight into the several challenges that ionospere diraction presents
to traditional methods of cycle slip mitigation: 1) increased code phae errors/noise, 2) increased
carrier phase noise/modelling errors due to di ractive uctuations, and 3) the rapid succession of

multiple cycle slips. The rst of these issues, increased codphase noise, is problematic because
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it somewhat hinders the computational benet of addressing large cycleslips using code phase
measurements. In this case, increased code phase noise contritait® large false-detection rates
that reduces the utility of code phase for large slip detection. The scond issue is perhaps an
even larger contributor to the standard algorithm's false-detection rates. lonosphere di raction is
associated with canonical fading and rapid phase uctuations that can behae similarly regardless
of whether a phase transition (cycle slip) actually occurs. In turn it becomes uncertain whether
these fast phase changes that show up in the residuals Glk1..2:.5 and GF (Lll);LZ;LS correspond
to actual cycle slips. Similarly, we discussed how the adaptive fering algorithm struggles to
discriminate between actual phase component variations and the variatios associated with phase
transitions or cycle slips, as evidenced by its addition of multipleslips in the Itered results. Indeed,
some sort of averaging is needed in order to reduce the impact of di raéte uctuations and other
unmodeled e ects. Toward the end of Chapter 1, we discussed how wilow-based detection as a
promising technique. However, the occurrence of several cycldis in rapid succession can be a
problem for window-based methods that usually assume the occurre® of only one cycle slip in
a given window. It at least requires more careful consideration befordeing applied to mitigation
of di raction-induced cycle slips, including careful assessmetnof what measurement duration and
sampling rate are necessary to correctly estimate slips. This wilbe a topic we explore in Chapter

4.



Chapter 4

Probabilistic Modeling of Cycle Slip Detection and Estimation

4.1 Introduction

In Chapter 1, we discussed several approaches to cycle slip mitigatiorThese types of cycle
slip mitigation algorithms that test for outliers in time-di erenced phase combinations have been
successful under normal signal conditions. However, as we discussedthe last chapter, when
it comes to more challenging conditions, uncertainty in the variation of signal phase components
can cause most cycle slip algorithms to fail. The authors of [2] rst discssed the particularly
di cult problem of dealing with cycle slips during ionosphere plasma bubble events when phase
measurements contain multiple cycle slips and unpredictable vagtions due to changes in ionosphere
total electron content (TEC). Along with the authors in [45], [101], and [65], they emphasize
the utility of IF phase combinations and careful estimation of non-dispesive phase components
when it comes to detecting cycle slips in these scenarios. Howeyeas noted in [3], even with
careful estimation of non-dispersive components it may still be impssible to e ectively estimate
slip occurrences in 1 Hz dual-frequency measurements when therniosphere variability is severe.
Our analysis of cycle slips associated with phase transitions in theakt chapter suggests that high-
rate measurements over an extended window are actually necessary teliably correct for cycle
slips under the most challenging conditions.

In this chapter, we aim to bring together all our available carrier phasemeasurements into a
general probabilistic framework for estimating cycle slips. In doingso we highlight the fundamen-

tal similarities between cycle slip estimation and ambiguity resoldion as mixed-integer inference
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problems, and we frame the cycle slip problem as a trade-o between &mation delity and com-
putational burden. An important aspect of this work is the quanti cation of how much information
is actually necessary to adequately resolve cycle slips. We show ah high-rate (>20 Hz) mea-
surements over a window of at least 16 seconds is necessary for estimat slips during ionosphere
scintillation. Although false estimations can still occur, this resolution of data substantially reduces
their probability.

This chapter is divided into ve remaining sections. In Section 42 we introduce a state-space
model for cycle slip estimation for an arbitrary number of signals, meastement sampling rate, and
window duration. In Section 4.3, we discuss modeling of the dispeige and non-dipsersive phase
components as Gaussian processes, as well as ways for modeling the actpof noise. In Section 4.4,
we discuss the cycle slip problem from a probabilistic perspecte and derive the expression for the
posterior distribution of cycle slip amplitudes given our measuremats. In Section 4.5 we present
results of characterizing the failure rates for slip amplitude estimation under a variety of harsh
signal conditions and for di erent measurement rates and window duratons. Finally, in Section

4.6 we summarize the results from this chapter.

4.2 System Model

In this chapter, we use the carrier phase measurement model that wimtroduced in Equation
1.5 from Chapter 1. Many approaches to cycle slip mitigation include codgphase measurements
in their formulation, e.g. the method we analyzed at the end of Chapter 2. However, because
they are orders of magnitude more noisy than carrier phase, code phase measments make little
contribution towards estimation of small slip amplitudes, especialy when there is any sort of
uncertainty in non-dispersive or ionosphere phase components. Thefore, to simplify our analysis,
we only consider carrier phase measurements in this work. Howevem principle, the system model
we present here can incorporate code phase measurements.

Here we describe the full set of measurement and state variables rent to the cycle slip

problem. We can vectorize our phase measurements fé¢ signals transmitted from one satellite at
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a time epocht:
y(®= () k (1)

where each | is modeled according to Equation 1.5. We denote a state vector consistinof the
non-dispersive and refractive ionosphere phase components along withe fractional phase bias for

each signal:

X(t)= G(t) I(t) By ::: Bk

We collect the integer-cycle bias components into a separate vector:

.
z(t) = z(t) zx (1)

Then we can write the following equation modeling measurements at aingle time epoch:

y(t) = Axx(t) + Baz(t) + (1) (4.1)
where
2 3 2 3
1 1 1 1
A1=§E : ; Bi= (4.2)
1 « 1 K
and where (t) =[ 1(t); . k()] is comprised of noise terms that we assume to be independent

and normally distributed with zero-mean and variances 2. Note that if we want to estimate

half-cycle instead of integer-cycle slips, we can change the entden B to be half-wavelengths.
We extend this model to consider a window of measurement and stateetrms at a series of

N, times t = [t;;  ; tn,]", and adopt the notation (t) = [ «(t); ; «(tn)]" (likewise for

G, |, etc.). We express our full system model over multiple time epchs as:

y(t)= Ax (t)+ Bz(t)+ (t) (4.3)
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where we have

2
1
g INt IK 1Nt ; B:B]_ INt; (4.4)

and wherely isthe N N identity matrix, 1y is a length N vector of all ones, and denotes the

Kronecker product. As an example, the structure of the matrix A is illustrated in Figure 4.1a.
When it comes to addressing cycle slips, what we are actually intested in is the changein

integer phase biasz(t). To accommodate this, lett®=[t?; ;t‘,\’,I ]T be a vector of times at which

slips, with amplitudes given by  z(t9, may potentially occur in our model. We de ne:
z(t) =S z(t9 (4.5)

where  z(t9 (which we call the cycle slip amplitude sequendeis analogous to the discrete deriva-

tive of z¢(t) and S is analogous to a discrete integral, having entries
8

5 1 ift tjo
Si;j = § (4.6)
~ 0 otherwise
We then use this matrix to construct;
B=B; S (4.7)

As an example, Figure 4.1b depicts a hypothetical structure oB for triple-frequency measurements.

Incorporating B and z into Equation 4.3 gives us our nal model equation:
y(t)= Ax (1) + B z(t9+ (t) (4.8)

Up until this point we have explicitly referred to the times at wh ich a quantity is evaluated
using the vectorst andt® The purpose of this is to emphasize how and z are generally evaluated
at di erent sets of times. For simplicity of notation, in the remainde r of the chapter we will often
drop the (t) and instead use just a single symbol to refer to a quantity evaluatedat all applicable
time epochs; e.g. we usg instead of y(t). The intent is to make things easier to read, and the

actual dimensions of the objects should hopefully be clear from context
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Figure 4.1: lllustrates the hypothetical structure of the various matrices relevant to a system model
for triple-frequency signals. Panels a and b show thé and B matrices, respectively, from Equation
4.8. Panels c and d show the covariance matriceQx from Equation 4.15 and Q, from Equation
4.23.

4.3 Distributions of G, |, and

In order to e ectively estimate the occurrence of cycle slips, tiis important to carefully model
the behavior of the non-dispersive and ionosphere phase components this work, we assume the
time series for G(t) and | (t) can be adequately modeled as zero-mean Gaussian processes (GP).
That is, any sampling of their time series at a discrete set of pointst is assumed to be drawn
from an appropriate joint normal distribution. So, for the vectors representing non-dispersive and

ionosphere phase time series, we have:

P(G = N (G 0;Qq) (4.9)
p(l)= N (1;0;Q) (4.10)
Here we usep( ) to denote the probability distribution for the random variable corres ponding to

its argument. We also denote the expression for the normal density wit mean and covarianceQ

evaluated atv 2 RN as:

NV Q=i2Qi tep 2 Qv ) (4.11)
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In addition to being GPs, we assume the phase components are time-sianhary processes

de ned by their autocovariance kernels, which we express as:

Ge( )= E[G(OHG(t+ )] (4.12)

a()=EN@®IE+ )] (4.13)

Here E denotes expectation.

In other works on cycle slip mitigation, trends in these components hae been modeled as
linear [50], polynomial [21], or as autoregressive processes [98]. Comparedthese approaches,
GPs o er more exible modeling of phase component behavior. Dependig on the choice of auto-
covariance kernel, they can represent a variety of interpolation appoaches, including those we just
mentioned as well as splines and Fourier modes [46], [34]. Moreover, GPoakels can deal with miss-
ing or irregularly-sampled data [74], which can be a common occurrencerf GNSS signals under
harsh conditions. However, this exibility tends to come at a computational cost. Fortunately, this
cost can be reduced by taking advantage of the Toeplitz structure (i.econstant along diagonal) of
time-stationary covariance matrices, which allows us to e ciently compute matrix-vector products
using the Fast Fourier Transform [75].

There are several standard options for parameterized autocovariance keels. The exponential
kernel corresponds to continuous but non-di erentiable processe while the squared exponential
kernel corresponds to processes that are in nitely di erentiable. Realizations of these types of
processes are often either too rough or too smooth to represent resiic data. The Magern kernel

with parameter generalizes these two kernels and provides a middle ground. It isgaal to the

exponential kernel at = 1=2 and converges to the squared-exponential kernel as! 1 . ltis
given by:
1 _ _
k()= 22( ) pzf K pzf (4.14)

where denotes the Gamma function, K is the modi ed Bessel function of the second kind, 2
controls variance, and is a scale parameter that controls the rate of probable uctuations. For this

work, we have heuristically chosen to use the Makrn kernel with parameter = 3=2 to represent
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both non-dispersive and refractive ionosphere phase components. Tigally the autocovariances
can be obtained from their process' corresponding power spectral dsities (PSDs). However, we
want to show that our model is generally applicable, and we do not have gab estimates for the
PSDs of the phase components for all the scenarios we consider in Chaptgr From our experience,
the Maern (= 3=2) kernel achieves a good balance between long-term \memory" of the press
trends while still allowing for small short-term uctuations.

In addition to these models for G(t) and | (t), we assume that the fractional biases are drawn
from independent Gaussian distributions with variance given by é, i.e.Bx N (0O %). Then the

combined statex can be considered as one big zero-mean Gaussian process:

p(x) = N (x;0;Qx) (4.15)

ical structure of Qy.

4.3.1 Noise Models for Harsh Conditions

In addition to the state variables in x, we take the measurement errors (t) to be zero-mean

and normally distributed:

P()=N(;0,Q) (4.16)

There are various types of noise that can impact our signal including themal noise, oscillator jitter,
receiver platform vibrations, and unmodeled errors such as ionospherdi raction uctuations. In
this work, we will only consider the impacts of thermal noise and unmoeled errors (speci cally
those due to ionosphere diraction), although the impacts of these othertypes of noise can be
inferred from our results. In general, thermal noise will be importar to consider for weak signal
re ections or low-elevation satellites, whereas the impact of unmoeled random phase uctuations
will be most important for signals experiencing any amount of scintillation or scattering from struc-

tures in the atmosphere. Other types of noise, like jitter or vibrations, likely have a comparatively
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small impact (c.f. [86]). How these dierent types of noise manifest h our measurement model
depends on the receiver system response, its output bandwidth, @ahhow measurement downsam-
pling or compression (if any) is performed. We will again make a simplifing assumption that the
noise bandwidth is equal to ET where T is the sampling interval of our measurements.

In Section 2.2.2, we introduced the thermal noise process that de ne as circular complex
white noise and how the power of this noise with respect to our signakimeasured by GNg. Usually
we can approximate the resulting noise process in our phase measurents as real-valued discrete

white noise and with variance (in units of cycles-squared) given by:

) 1 1

= + —
! 2C=NgoT

thermal = 5N, T (4.17)

However, this approximation does not work at low C=Ng or fast sampling rates. In particular, it
breaks down when the signal-to-noise ratio is roughly less than 1. At a badwidth of 10 Hz, this
corresponds to a GNg of SNR  BW = 10 dB-Hz, which is very low. Meanwhile, cycle slips tend
to arise due to noise in phase unwrapping when the SNR reaches below52.which corresponds
to a C=Ng of 25 dB-Hz at 10 Hz bandwidth. This is also very low GNg, but we still see it for
weak re ection (like the GNSS-R example from Section 1.4.1 in Chapter 1)very low elevation or
partially obstructed satellites, and during deep signal fading due b multipath or interference.
When it comes to di raction-based noise processes, we can no longereessarily consider the
noise process to be white. Consider the top two panels of Figure 4.2, wih show power spectral
densities (PSD) for ionosphere di raction error, which we obtain by averaging periodograms of the
di raction error from our ionosphere scintillation simulations. The le ft panel shows spectra for
di erent scintillation strengths (as indicated by S4) while the right panels shows the spectra for the
same scintillation strength but with di erent decorrelation times (indicated by ). There is a break
in the spectrum just below 1 Hz, corresponding to the characterist uctuations of scintillation
at around this frequency. Notice that there is a strong dependence ofpectrum amplitude on
scintillation strength. Meanwhile, the value of s related to the frequency of the break in the

spectrum, but has little e ect on the overall amplitude of the noise. Because of this, we consider
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scintillation strength as measured by S, to be the primary factor that determines the level of
di raction-induced phase noise.

While we saw in Chapter 2 how both thermal noise and di raction compoundto create cycle
slips, when it comes to modeling phase noise usually one or the othes dominant. To show this,
in the bottom panel of Figure 4.2 we plot the phase noise variance versus ragurement bandwidth
due to ionosphere diraction for 3 dierent scintillation strengths , each of which we obtain by
integrating the corresponding PSDs from zero up to the measuremensampling frequency. We
also plot the phase variance due to thermal noise (dashed black line) foa C=Ng of 20 and 25
dB-Hz according to Equation 4.17. Under our assumptions, we see that for strapscintillation the
thermal noise variance will not exceed the di raction noise variance, gen for measurements/noise
bandwidth at 100 Hz. For moderately strong scintillation (S; = 0:6) thermal noise can surpass
di raction noise variance at around 25 Hz, while for weak scintillation the di raction-induced phase
noise is weak and the thermal noise becomes dominant at only 5 Hz. Additional] note how the
di raction noise variance is approximately constant for measurement bamlwidth past the break
frequency (around 0.5-1 Hz). Meanwhile, the thermal noise variance isighly dependent upon the
measurement bandwidth. This means that when we go to model phase nasthe measurement
sampling rate / bandwidth is very important when dealing with low-d i raction low-C =Ng scenarios
where thermal noise dominates. On the other hand, when di raction noi® is dominant, sampling
rate will not be an important factor in determining phase noise variance alove 1 Hz.

Based on this assessment, we can modef as:

2= (ziir + t2hermal (4-18)

2

where thermal

is obtained as in Equation 4.17 and gir is obtained by integrating the appropriate
PSD estimates as in Figure 4.2. The related work in [73] considers a simail but more intricate
model for phase noise variance that accounts for PLL bandwidth and oscillatojjitter. They also
adjust the thermal noise variance to account for scintillation-induced fading. These more realistic

noise models could prove useful when it comes to improving appktion to real data or if noise
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mis-modeling turns out to be a limiting factor. We will stick to ou r simple model in Equation 4.18
for the analysis we perform in this chapter.

One caveat worth mentioning is the correlation between diraction u ctuations for signals
at multiple frequencies. This model assumes uncorrelated noise ati erent signals, which is only
somewhat true for the case for ionosphere scintillation [72]. A large portiorof di ractive ionosphere
uctuations are correlated in a way that resembles the refractive iorosphere e ect [17]. Similar
correlations are likely present in the di raction due to troposphere scintillation. Ultimately, how
we model noise is highly application specic. Our model aims to be bdi powerful and general,
and we will only consider the simple noise model introduced in Eqation 4.16. This model will
also be su cient and e ective for the detection and estimation approach we introduce in Chapter
5, although some bene t may come from more speci c noise modeling undedi erent scenarios,

which is a promising topic for future investigation.

4.3.2 Fixing Model Hyperparameters

The phase component covariance®x will be determined by the parameters (23 Gs |2 I
and é while Q is determined by the parameter 2. Finding an appropriate covariance parame-
terization is an important aspect of the proposed cycle slip mitigation technique. If the covariance
is too small then we under t the data and risk many false alarms; if the covariance size is too big
then we will over t the data and risk missed detections. 1 In general, the covariancesQg, Q) ,
and Q will depend on the data at hand, and there are various approaches to modek$ection and
hyperparameter optimization given that data [89].

One way to choose the model parameters is to simply hand-tune themThis is the approach
we take when applying our algorithm to the ocean re ection and mountaintop RO datasets in
Chapter 5 Section 5.7.2, since for those cases we do not have a larger set atalwith which to

validate our choices. For cases where the noise variance is mostly duetteermal noise, we can set 2

! The one exception is 3; this parameter is relatively less important, and simply needs to be chosen large enough
to account for the initial bias in the phase measurements.
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Figure 4.2: PSDs for ionosphere diraction (top two panels) and corresponthg phase noise vari-
ances for di erent bandwidth (bottom panel). Bandwidth is assumed equal to 1=T for sampling
interval T.

using Equation 4.17. We can look at the behavior of \cycle-slip-free" pars of the signal phase and
phase combinations in order to determine reasonable values forZ, g, 2, and ;. Alternatively,
when choosing model hyperparameters for scintillation measuremésy, we have at our disposal
realistic simulations using the phase screen model that we introdced in Section 2.2.1 of Chapter
2. In this case, we can obtain our parameter values by performing a grid seeln over |2 ,and ?
in order to nd the set of values that best explains the simulated measirements. In Appendix B,
we discuss this process in more detail. Diraction will be the domhant contribution to , and so
another option for setting 2 is to base its value on the di raction noise PSDs that we discussed in
the last section. In actual signals, it is di cult to completely separ ate the di ractive and refractive
phase uctuations. This means there is some exibility in how the model hyperparameters are

tuned. If the refractive component is speci ed to be more smooth, v need to account for more
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noise by increasing 2. On the contrary, we can allow the refractive component to uctuate more by
decreasing |, and this in turn allows us to reduce the size of 2 That is why, in general, it is best
to choose these parameters simultaneously using our realistic s¢iltation simulations. Meanwhile,
we choose (23 G, and é heuristically. For instance, parameters forG can be chosen by observing
the amplitude and scale of uctuations in the IF combinations for real data, or they can be tuned

to optimize some performance outcomes.

4.4 Probabilistic Estimation

Now we use our established system model from previous sections togsent cycle slip es-
timation from a probabilistic perspective. Using the system modelfrom Equation 4.8 and noise
distribution from Equation 4.16, we obtain the following likelihood di stribution for y given x and

Z.
p(yjx; z)= N (y;Ax +B z,Q) (4.19)

We also have the prior distribution on x from Equation 4.15. As for the discrete-valued z, we

can express an arbitrary prior as:

p( z)= X w ( z z;) (4.20)

i=1
Here, eachw; is a weight corresponding to a particular cycle slip sequence z; that can be thought
of as a point on the integer lattice: ZX N, For practical reasons, we assume( z) is only nonzero
on some admissible subset this lattice, which we denote. This set, which hasN elements, should

initially be large enough to contain any possible cycle slip sequenceSimilar to [22] and [29], we

can assume independence betweenand z so that:

p(x; 2z) = p(x)p( 2) (4.21)

Using these likelihood and prior distributions we can express thgoint distribution of p(y;x; 2z),
and through orthogonal decomposition we can derive the expression fq(yj z). Similar deriva-

tions in the context of GNSS ambiguity resolution are mentioned in [80] and 29]. The resulting



steps can be summarized as:

ply;x; z)= p(yjx; 2z)p(x)p( 2)

N (y;Ax +B z,Q)

N (x;0;Qx)p( 2)

N X; Xjy; Z;Qij

N vy yi 22Qy p( 2)

where

AQ AT +Q

Qy
Quy = Qx  QxATQ,'AQ«

xjy; z = ijyATQ l(y B 2)

yjzzBZ

p(xjy; 2)p(yi 2)p( 2)
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(4.22)

(4.23)
(4.24)
(4.25)

(4.26)

As an example, the structure of the matrix Qy for triple-frequency signals is illustrated in Figure

4.1d.

It follows from Bayes' rule that:

plyi z)p( 2)
p(y)
_ p Pl 2)p( 2)
iplyj zi)p( zi)

p( zjy) =

Using Equation 4.20, we can rewrite Equation 4.27 as:

- X +
p( zjy) = wo(z @ zZ)
where

wt = pWi N (y;B z;Qy)

' W N(YiB 7:Qy)

(4.27)

(4.28)

(4.29)
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What Equation 4.29 essentially tells us is that the posterior probability of a particular cycle slip
sequence is proportional to its prior time a\modi ed" likelihood t hat takes into account the modeled

smoothness of phase components througQy .

4.4.1 Integer Least Squares

Here we draw a connection between the posterior derived in the présus section and the
integer least-squares (ILS) solution, which is an approach to optimizig discrete-valued variables
that has commonly been used to resolve GNSS carrier phase ambiguities [78]his connection has
previously been pointed out in [22] and [80]. In ILS, we rst relax the integer constraint on z,
and refer to the new oat-valued slip amplitude sequence as 2. Then, assuming an improper at

prior p( 2)/ 1, we obtain the following posterior distribution:

P( 2jy)=NC( 2, »Q ») (4.30)
Q,= BTQ,B ' (4.31)
»=Q ,BTQ,ly (4.32)

The approach of ILS is to nd the integer-valued argument that maximizes the expression
for the density in Equation 4.30. A visual interpretation of this solution is the integer-valued point
that lies closest to the oat least-squares estimate ;, under the metric induced by Q . Figure
4.3a illustrates the \pull-in" regions that de ne which oat amplitude estimates are mapped to
which integer grid points. For active ionosphere conditions the pullin regions are stretched out
along a particular direction due to the uncertainty in the ionosphere phase components. When
there is no correlated uncertainty in the phase components, theseydl-in regions will just look like
square boxes surrounding each grid point.

The connection between the ILS solution and the posterior from Equation £27 stems from

the realization that the following expressions are proportional (with respect to argument z;):

N(y;B z;Qy)/N ( zi; 2Q ») (4.33)
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SO we can rewrite Equation 4.29 as:

f_ W N( zi; 5Q »)
| LW Nz 25Q »)

=
I

(4.34)

We expound on the result in Equation 4.33 in Appendix C. The result of Equation 4.34 shows
us that when the prior distribution for  z is at, i.e. w; / 1, the argument z; that maximizes
the above expression is equal to the ILS estimate. In other words, whethe prior on  z is non-
informative, the maximum posterior (MAP) and ILS solutions coincide. Th e distribution describing
the posterior in this case is sometimes called the \discrete Gaussidror \discrete normal" and can

be denoted:
L _1 h . TA 1 . |
DN ( zi; 2,Q »)= gexp( zi; 2) Q 3( zi; ») (4.35)
where S is the normalizing constant.

ILS has been used to frame the problem of carrier phase ambiguity resolign for a long time,
and it is no surprise that estimation of cycle slips shares the same wterlying problem structure.
Inference on these types of problems is NP-hard in the general case, ish means computing or
maximizing the posterior involves a brute-force search over the sgce of z. There are a number
of methods to help make the search process more e cient. As we meraned in Chapter 1, many
ambiguity resolution and cycle slip algorithms apply the least-squaresambiguity decorrelation and
adjustment (LAMBDA) when estimating carrier ambiguities or slip ampli tudes. The decorrelation
aspect in LAMBDA actually refers to a particular implementation of a latt ice reduction algorithm.
These types of algorithms can make searching over the integer solutiomaore e cient by nding
new bases of the integer lattice that are approximately orthogonal under tle metric induced by
Q ;. The second aspect of the LAMBDA approach to ILS involves a search to nd the best integer
parameter vector in the least-squares sense. We discuss this aspét more detail in Section 5.5
of Chapter 5 where we introduce a modi ed search algorithm designedoir the windowed cycle slip

problem.
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4.5 Simulated Cycle Slip Estimation Performance

With our system model established, we now try to answer an elusivebut very important
guestion: how well can we actually estimate cycle slip occurrenseunder harsh conditions? And
moreover, how much data is actually necessary to do so reliably? Spiecally, it is useful to
know for what duration and at what sampling rate we need measurements in ater to achieve
high probability of correctly estimating cycle slip amplitudes. Similar questions regarding cycle
slip estimation performance in the presence of uncertainty in disprsive and non-dispersive phase
components or measurement noise have been addressed for single-épotwethods in [3] and [90].
However, no study has addressed this question as it relates to a wilgv of observations at di erent
sampling rates.

We will address four di erent scenarios corresponding to the modeparameters described in
Table 4.1. The rst three scenarios correspond to mild, medium, and stong scintillation levels at
a high C=Ng of 50 dB-Hz. The fourth scenario is mild scintillation with a low C=Ng of 25 dB-Hz.
Here scintillation strength is completely determined by S; and we keep constant. Note that the
parameters for (23 and ¢ are also kept constant and correspond to very smooth, well-behaved
non-dispersive phase components. We obtain the values for? by adding the phase noise variances
for thermal and di raction-induced noises as described in Section 4.3.. Note in particular that this
means the noise variance is bandwidth dependent and will change for derent sampling frequencies.
The value of 2 at 10 Hz sampling rate is shown in the table.

In order to demonstrate model strengths under these di erent scearios, we rst consider the
case of estimating the amplitude of a single cycle slip in the middleof a window of observations;
i.e. the vector t °from Equation 4.5 contains a single element, which is the time at the midle of the
window. We assume measurements modeled according to Equation 4.19 afmr model parameters
corresponding to the di erent scenarios in 4.1. Figure 4.3a depicts pllrin regions that arise when
using a 10-second window of 5 Hz dual-frequency measurements assumimodel parameters from

scenarios 1 and 3. Each region is colored according to the probability of idéifying the corre-
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Units Scenario 1 Scenario 2 Scenario 3 Scenario 4

S, 0.3 0.6 0.9 0.3
s 0.6 0.6 0.6 0.6

C=Ng dB-Hz 50.0 50.0 50.0 25.0
2 m? 0.1 0.1 0.1 0.1

G S 40.0 40.0 40.0 40.0

2 m? 1.0 1.0 1.0 1.0

| s 60.0 9.0 5.0 60.0

2 cyc® @ 10 Hz 0.13 0.20 0.47 0.26

Table 4.1: Characteristics and hyperparameter values for di erent scearios corresponding to a
variety of signal conditions.

sponding slip amplitude, given that no slip has occurred. As expedd in this situation, the correct
cell (0,0), which is outlined in dark gray, has the highest probability of being identi ed. However,
certain slip amplitudes like (1,0) show a non-negligible probability of identi cation (denoted Pjq).
Assuming that our measurement model is accurate, summing up the praddbilities of these other
cells (or equivalently taking 1  Pjg) produces the probability of false identi cation (denoted Ps,).
We considerPs, as a measure for how well or how poorly a particular model can estimate cye slip
occurrence.

For each of the four scenarios, we consider models for single-, dual-, andple-frequency
signals over a range of measurement sampling rates and window durationszigure 4.4 shows the
Pta computed for the di erent model structures and for each signal scendp. In general, we see
decreasedPs, for higher sampling rates, longer window durations, and more signal fregencies. It is
clear that the biggest factor determining model performance is the pesence of di raction-induced
phase noise. For single-frequency signals the situation is particul&y dire, with false identi cation
probabilities staying above 30% for the case with the strongest scinlfiiation. For dual- and triple-
frequency signals, the false identi cation probability can still be brought down to roughly 10-20%
when using at least a 16-second window of 20-50 Hz measurements. For lowXy conditions,
we also note that around 16-20 second windows were necessary to achieve thest performance.
Meanwhile, increasing sampling rate improved performance under bécintillation conditions. Under

all the scenarios, it was not possible to reliably estimate slips in tie 0.5 or 0.2 Hz measurements.
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Figure 4.3: Pull-in regions and corresponding probabilities for quiet [eft panel) and disturbed
(right panel) signal conditions. Each region is colored according to the pobability of the oat
estimate  , lying in that region, given that no slip has actually occurred.

4.6 Summary

In this chapter, we established a general approach to probabilistic iference on the occurrence
of cycle slips in GNSS phase measurements. Along the way, we introdad Gaussian process models
for phase component time series and noted their improved exibilily when compared to other
models. We also discussed the contributions of both thermal and di ection-induced noise to the
phase measurement variance, which we argue are the two most relevant @i sources under harsh
conditions. We derived expressions for the posterior distributionof cycle slip amplitudes, and we
showed how the MAP estimate is the same as the ILS solution when slip pors are uniform. Finally,
we used our model to simulate and assess cycle slip estimation penfoance under various signal
conditions, the results of which were shown in Figure 4.4.

There are many di erent scenarios for signal conditions that will corregpond to varying ca-
pabilities when it comes to estimating cycle slip occurrencesand the results from Figure 4.4 only
cover a selection of representative examples. Similar analyses car lgarried out for di erent sets
of signals and signal conditions. As for the case of di ractive ionosphere saiillation, we see that

in order to achieve reasonably low probabilities of false identi cation we should use at least a 16
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Figure 4.4: Probability of false slip amplitude identi cation under di erent signal conditions and for
di erent model structures. Each row corresponds to signal conditons with model hyperparameters
chosen according to Table 4.1. The columns show results for models ugi single-, dual- and triple-

frequency measurements.
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seconds of measurements sampled at 20 Hz or faster. This will be a motivatj premise driving our

development of cycle slip detection and estimation methods in the axt chapter.



Chapter 5

Novel Batch Algorithm for Cycle Slip Detection and Estimation

In chapters 2 and 3, we saw how harsh signal conditions, ionosphere di rdion speci cally,
produce cycle slips at a rate of tens of slips per minute and how thewre challenging to mitigate.
As a concrete example, Figure 5.1 shows a case in the Hong Kong data whereamly a dozen
slips occur over the span of 10-20 seconds, with occurrences highligtd in the vertical shaded
regions. Meanwhile, our analysis from the last chapter indicates that weneed at least that much
measurement data to reliably estimate the slip occurrence. Thiposes an interesting question of how
to deal with the multitude of cycle slips that occur under harsh signal conditions. In particular, one
might initially consider the potential for cycle slips to occur between any two measurement epochs.
In this case, when considering a window of high-rate measurement anglip epochs the problem
becomes very high-dimensional and the time-adjacent oat estimates Wi be highly correlated (e.g.
consider the di erence between estimating a slip occurring at 10 seconds versus 1.1 seconds). Even
worse, when numerous cycle slips occur in sequence, as is the caséer harsh signal conditions,
the pairwise dependence between time-adjacent slip amplitudesesults in a model that is coupled
over the entire estimation window. The various authors that have addessed window-based cycle
slip detection (e.g. [21], [14] [49]) all make restrictive assumptions abduhe number of slips that
can occur in a given window. Given the random and chaotic behavior that an occur under harsh
signal conditions, such rigid assumptions are ultimately a hindrance ¢ e ective mitigation.

In this chapter, we introduce a batch estimation algorithm that uses awindow of measure-

ments at arbitrary sampling rate for any number of carrier frequencies In particular, we propose
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Figure 5.1: Example of cycle slips occurring in the Hong Kong scintitition dataset for GPS PRN 24
on 2013-10-03. The top panel shows signal€Ng, the middle panel shows detrended carrier phase
measurements, and the bottom panel shows the triple-frequency IRand GIF phase combinations.
The shaded regions indicate the occurrences of cycle slips.

that a better way to formulate the window-based cycle slip estimafon is by using an appropri-
ate prior on z that is not actually uniform but instead re ects the sparsity of slip o ccurrence.
Our characterization of slip occurrences as Poisson processes in Chap2 provides good empirical
justi cation for this interpretation. As we demonstrate in this chapt er, introduction of a sparse
prior naturally leads to a way of detecting cycle slip occurrences over a window of observations. By
rst detecting slip occurrences we can e ectively restrict the support of the posterior to only the
detected epochs, thereby reducing the dimension and making thimference problem more tractable.
Once we have our model with reduced dimension, we can search for thmost probable cycle slip
amplitude sequence. For this last step, we introduce new and adapteapproaches to nding the
optimal integer parameters in the high-dimensional ILS problem associad with these detected
slip occurrences. Overall, this approach can be summarized in thesfour steps: 1) We compute a

oat estimate of z that incorporates a sparsity-inducing prior. 2) We detect slips as maxma in



103

norm of this sparse oat estimate. 3) We compute a reduced system modelsing the detected slips
from the previous step. 4) We search for the best integer candidates ithe reduced model to nd
the MAP cycle slip amplitude sequence. We then use the MAP estimat to correct for cycle slip
occurrences.

The results of applying our algorithm to simulated and real scintillation data sets indicate
that it is e ective, however it also has some downsides. This metbd is computationally demanding,
especially when compared to cycle slip algorithms that are used in prdice. It is meant to be a
thorough approach to cycle slip inference that is appropriate for post-pocessing or that can be
used as a benchmark for design of other algorithms. Further work will be acessary to see how its
principles adapt to sequential and near real-time processing. Also, &focus on use of simulations
of ionosphere scintillation in order to tune our algorithm, and the parameters we obtain may or
may not be suitable for use in other harsh signal scenarios. Neverthelgsthe principles behind the
algorithm that we introduce are applicable to a wide variety of contexts, and we demonstrate its
e ectiveness for di erent harsh signal conditions in our results.

This remainder of this chapter is divided into 4 sections. Section5.1 brie y discusses the
model we introduced in Chapter 4 and how we can tune its hyperparanmters for the Hong Kong
scintillation dataset, which is the primary focus when evaluating ou results at the end of the
chapter. Then, in Section 5.2 we describe our method for obtaining th sparse oat estimate of
cycle slips, followed by Section 5.3 that describes the detectionf cycle slips occurrences using
the sparse oat estimate. In Section 5.4 we brie y describe the redged estimation model that is
obtained after detecting the slips. In Section 5.5 we provide backgrund on the LAMBDA search
algorithm for determining integer ILS parameters, and then we introduce two new approaches to
search solutions to our high dimensional ILS problem corresponding to ta reduced estimation
model. We provide a summary of the algorithm in Section 5.6 and presentesults of applying it to
simulated and real cycle slip datasets in Section 5.7. Finally, we prade a summary and discussion

in Section 5.8.
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Units | Window 1  Window 2
S, 0.86 0.71
S 0.53 0.7 3
C=Ng | dB-Hz 48.00 49.00
é m?2 0.001 0.001
G S 60.00 60.00
|2 m?2 0.80 0.60
| S 7.00 9.00
2| cycleg 0.20 0.16

Table 5.1: Scintillation window characteristics and hyperparameter \alues

51 Hyperparameter Tuning: Hong Kong Dataset

When demonstrating our results in real measurements, we will maint focus on two windows
of the Hong Kong scintillation dataset. The top two panels of Figure 5.2 showthe C=Ngy and
detrended phase measurements for that dataset, with the two window of interest depicted by the
shaded regions. The bottom two panels show the scintillation indexS, and decorrelation time
respectively, which are related to the cycle slip occurrenceates as we discussed in Chapter 2. Table
5.1 lists the averageS,, , and baseline GNg for the L1 signal that describe the signal conditions for
the two windows in Figure 5.2. As discussed in Section 4.3.2 of Chapter 4ye can use measurement
simulations in order to tune our model hyperparameters. As such, we se the S, and values
from Table 5.1 when generating the simulations that we use to choose ourylperparameters. We
describe this process along with additional considerations in Append B. The parameters we use
corresponding to the two scintillation scenarios we assess in thisgper are also provided in Table

5.1.

5.2 Sparse Detection

Our objective in this section is to detect cycle slips. Put anothe way, we would like to nd a
set of times at which there is a non-negligible probability of a slip haing occurred. Moreover, we
want to do this while making full use of our measurementsy and taking advantage of our knowledge

of the sparsity of cycle slip occurrence. To do so, we rst introdice a new variable z, called the
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Figure 5.2: Hong Kong scintillation dataset that was introduced in Section1.4.0.2. The rst and
second panels show the ENp and geodetic-detrended phase for the three signals. The third and
fourth panels show the scintillation indices S, and decorrelation times , respectively, for each of
the signals. The shaded areas indicate the two time windows of intess.
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sparse oat estimate of z. For this variable, we consider a sparsity-inducing prior that is given

by the product of Laplace distributions:

Y Y _ _
p( 2)= sexp j~z(t9] (5.1)
k2K t02t0

The parameter (not to be confused with the carrier wavelengths ) is the inverse scale parameter
of the Laplace distribution. It plays an important role in the L1-norm optim ization that arises when
maximizing the posterior corresponding to this prior. We consider tow this prior augments the

posterior distribution:

p( zy)/ plyi z)p( 2) (5.2)
From this we see that the log of the posterior can be expressed:

logp( zy)= L ( 2+ C (5.3)

where C is constant with respect to z and we have the following objective function:

L( 2= Sy B zig, + i zi (5.4)
with
iy B zi3, =(y B 3»'Q'(y B 2 (5.5)
e e X X - .
i = iz (19] (5.6)
k2K t02t0

The maximum a-posteriori (MAP) estimate of the oat cycle slip amplitud es is given by:

z= argmin fL ( 2z)g (5.7)

z2RKN 10

Our detection strategy is to use the MAP estimate of the oat slip amplit udes as an indicator of
the occurrence of slips.
5.2.1 MM Algorithm

The objective function in Equation 5.4 corresponds to a quadratic optirmzation problem

with L1-norm regularization. This type of problem appears in various contexs, for example in
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basis pursuit denoising and problems involving LASSO (least absolutetsinkage and selection op-
erator). Our particular formulation is closely related to the problem of total variation denoising
with simultaneous low-pass ltering (LPF/TVD), which is introduc ed in [69]. In that work, the
authors use majorizer-minimization (MM) to solve the problem of extracting a sparse signal com-
ponent from a 1D noisy signal with low-frequency trends. Here, we exdnd and adapt their MM
approach to solve Equation 5.7 for our case of a multidimensional time sergecontaining multiple
sparse signal components.
The principle behind MM is to solve a sequence of optimization proldms where the objective

functions are quadratic majorizers ofL. A majorizer of the objective function L at a reference point

# isafunctionM j suchthatM ;( %)= L( z)andM( 2 L ( 2 8 2z The solution of the
optimization problem corresponding to M ; is used as the reference point for the majorizeM .1
in the next iteration. The resulting sequence of solutions will cowerge to the global minimum of L
(so long asL is convex). This concept is illustrated for a hypothetical 1-dimensonal optimization
problem in Figure 5.3.

We use the following majorizer ofL:

Mi( D= Jiy B oz 5 2T bz i mi (538)
where
i = diag(j zj) (5.9)
The minimizer of Equation 5.8 is given by:
z. = BTQ,'B 1 'BTQ,ly (5.10)

As iterations progress, many entries in 2 approach zero and introduce numerical issues when

evaluating expressions containing ; 1. To circumvent the issue, the Woodbury matrix inverse

identity can be used to obtain an equivalent expression in terms of ;:

1
zaa= - i BT ;'B i BTQ,'y (5.11)

i Qy B BT
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Figure 5.3: lllustrates the MM process for a hypothetical univariate minimization problem. The
black curve is the objective function, the gray curves are the seés of quadratic majorizers, and
the blue lines illustrate how the values that minimize the majorizers progress towards nding the
minimum of the objective function.

To perform the algorithm, zg can be initialized as a sequence of all 1s. One then proceeds
to minimize the objective function in Equation 5.8 evaluated at zp by applying Equation 5.9
and solving Equation 5.11 to obtain z;. This process is repeated until convergence or some set
number of iterations. The function MM in Algorithm 1 outlines this pro cess. As a result of this
process, we obtain the sparse oat amplitude estimate 2z, an example of which can be seen in the

fourth panel of Figure 5.10 in Section 5.7.

5.3 Detection and Tuning Parameters

If our algorithm is properly tuned, the oat estimate  z at the end of the MM iterations will
be close to zero except at epochs where there is a non-negligibleopability of cycle slip occurrence.
It is important to note that because 2z is a oat estimate, it does not necessarily do a good job of
indicating which signals contain slips, especially when slip amptudes are correlated. An example
of this can be seen in Figure 5.10 from Section 5.7.1, whose third and fourthgmels show the slip
bias truth reference and 2, respectively. Any time there is actually a simultaneous slip in ore
direction on the L2 and L5 signals, 2z shows a spike on the L1 signal in the opposite direction.
It makes sense that the optimal argument of a sparsity-inducing cost faction would estimate one
slip on one signal rather than two slips on the two other signals. Neverthkess, it is clear that any

non-zero values in the oat estimate correspond to slips in the actual neasurements, and so we
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Algorithm 1 Majorizor Minimization for computing z
1: function MM (y;Qy;B)

2: . Fory 2 RKNt Qy 2 RKNt KNt g 2 RNt Nio
3: Zo onesfNo)

4 for i 1;:::; max iterations do

5: i diag( 2ij)

6: i Qy B BT

7 2i41 1 BT ;'B iBTQly
8 . estimate is z from last iteration

9 return par

adopt the approach of detecting cycle slips as relative maxima in the nan of z evaluated at each
time epoch. We also note that MM is a multiplicative algorithm, and so while most of the values of

z will be extremely close to zero, they will never equal zero. Thus @ also introduce a detection
threshold age; to avoid detecting slips from spurious small uctuations in 2. We denote the times

at which we detect slips ast 4et, Which can be expressed as:

tget = Ft 2% ji 2(t)ji1 > ager and (5.12)

ji z(t)jj1 is local maxg

The performance of this detection scheme is dependent upon the clws of both and
aget- In the MM procedure, increasing the value of has the e ect of promoting sparsity in
the result, i.e. making more entries closer to zero. In theory, theactual value of should be
related to the rate of cycle slip occurrence among all signals being ceiered. In the case of
ionosphere scintillation, since we have realistic simulations at oudisposal, we choose both and
aget to optimize detection performance on simulated datasets. We performak 50 simulations of 5-
minute duration and estimated 2z using values of ranging from 15 to 100. We then detected slip
occurrences according to the procedures above using di erentalues ofage;. We consider a detection
to be correct if it falls within 0.2 seconds of an actual slip occurrene in the truth reference. This
allows us to calculate the number of missed detections and false alarmisr the various values of
and aget. Figure 5.4 shows the results, with the missed detection and falsalarm rates (averaged

over all simulations) plotted against the detection threshold. The various lightly-colored lines show
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how these curves change for di erent values of , and the colored dots represent the corresponding
crossover point of the false alarm and missed detection curves. The datines highlight the curves
corresponding to the value of that minimizes the crossover point. We use this as our criteria for
choosing the value of , since it optimizes the trade-o between detecting more slips andaccruing
more false alarms.

With  established, choosing the value ofg4e; mainly becomes a trade-o between ensuring
that we detect all cycle slips and reducing the computational burdenof approximating the posterior;
the more slips we detect, the more parameters we have to estimate iour reduced model. We found
that a threshold of 0.01 works well for all the scenarios we investigated, aig enables detection of
all consequential cycle slips while keeping the total algorithm runtme at a reasonable level. One
interpretation of this whole process is that the values of and age; are hyperparameters for the
sparse prior on z that is realized through this entire process of detection. Our validation of
these parameters is based on simulations, but it is conceivable that thir values can be linked to
characteristics of the signals themselves. For instance, in Chapte2 we determined how the rate of
cycle slip occurrence relates to signal conditions for the case of diactive ionosphere scintillation.
It is conceivable that other relationships can be developed to quantif the rates of slip occurrence
in other scenarios (ocean re ection, troposphere scintillation, etc), and that these slip rates can be

linked to the choice of . This will be an interesting topic for future investigation.

54 Reduced Model

Having established a method for detecting cycle slip occurreres, we can now form a new
system model that only admits slips at the times detected in the pevious step. In particular, we
construct the matrix S from Equation 4.5 usingt®= tge and create a reduced model matrixB ;eq
relating slips at these times to the measurements. We then evaluate the mean and covariance
of the oat posterior distribution from Equation 4.31. In the new model, Q , is of dimensions
KN4 KN 4 whereNg is the number of detected slips. Because of the sparse detectionqaredure,

Ng Nt and so the problem dimension has been signi cantly reduced. The rspanel of Figure
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Figure 5.4: Shows the rate (in slips per minute) of false alarms and migsl detections for a range
of values for the detection thresholdage; and tuning parameter . The colored points indicate
crossover points of the false alarm and missed detection curves for therious values of . The
black lines indicate curves for the value of that minimizes the crossover point.

Figure 5.5: Examples of the covarianceQ 5 of the reduced model oat estimate corresponding to
the real data from Window 2. The second and third panels show the covasance and precision (i.e.
inverse of the covariance) matrices for the permuted reduced modlewhere parameters are ordered
by slip epoch. Di erent cliques over the model parameters are idicated in the third panel.
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5.5 shows an example of) , in the reduced model for dual-frequency signals. There are four
nearly diagonal blocks corresponding to the auto and cross-covariances tife slip amplitudes on
the two signals. To make this covariance more diagonal, we apply a permut&n P so that the
covariance terms corresponding to a particular epoch are adjacent,q. it converts it froma K K
matrix of Ng¢ Ng blocks to aNg Ny matrix of K K blocks. Panel b shows the permuted
covariance matrix, which is now close to block-diagonal aside from a saif 2 2 blocks just o the

main diagonal.

55 Search for ILS Solution

With our reduced model established, we are now ready to consider agally nding the best
amplitude sequence estimate. As we mentioned, this type of problenmvolves a discrete search
over potential candidates for the maximizer of Equation 4.28. We will assure the prior on cycle
slip amplitude sequences for the reduced model is non-informates so that our MAP estimate
corresponds to the ILS solution. Recall that, for a oat estimate & and covarianceQ, the ILS

problem can be expressed as:
a=argmin g, (@ 4)'Q (a 4 (5.13)

In our case,a= zand Q = Q ,, although we will use a and Q in this section for notational

simplicity and for consistency with other literature.

5.5.1 LAMBDA

To nd the solution to Equation 5.13, we search for a over a hyper-ellipsoidal region de ned

by:
r(@=(a a)T Q ! (@ 8) Rsearch (5.14)

wherer (a) is the objective function we are trying to minimize and Rgearch denotes the search radius.

We can then compare eacha in this region to nd a. The LAMBDA algorithm prescribes an
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approach that makes this search as e cient as possible. Normally, it is brolen down into two steps:
reduction and search. The rst step is actually optional, but serves o make the search process more
e cient by nding a new basis for the integer lattice which approxi mately orthogonalizesQ 1. We
skip this step for reasons explained in Section 5.5.2. The main way that LANBDA accomplishes
the second step is through thesearch-and-shrink algorithm, which is a method of enumerating
points close to & while simultaneously shrinking Rsearch, thereby reducing the number of points
we must search over. The algorithm has been carefully explained in [79]19], and various other
publications. Here we go through the essential details, closely followg the development provided

in the o cial LAMBDA documentation [25].

55.1.1 Sequential Conditional Fixing

To explain the search process, it is helpful to rst describe a slution for a that is obtained by
sequentially xing the individual components of a. This is also called the \bootstrapped" solution.
We begin with the LDL T decomposition ofQ, where D is diagonal andL is lower triangular with

ones along its diagonal. Inserting this forQ in Equation 5.14 yields:
(@ a'L "D &L (@ 84 Rsearch (5.15)
Next, dene a=a L !(a &) so that
La aj=a & (5.16)

The entries of a are the conditional oat estimates of each component ofa given its predecessors,
i.e.
aj =i 1=8 (& a&)Lij; 1 i N (5.17)
j=1
Here,&.1; 1isthei-th component of& conditioned on the xed values of the preceding components,
ai;:::;a 1. Note that Equation 5.17 can be obtained using forward substitution appliedto the

system in Equation 5.16.
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Inserting Equation 5.16 into Equation 5.15 vyields:
@ @'D *(a a) Rsearcn (5.18)

SinceD 1 is diagonal, this can be written:

(a1 a1)2+ L (@& an)?

D 1 D N Rsearch (5-19)

We see that in order to minimize the LHS of Equation 5.19,a should in some sense be close

In particular, if we x the rst i 1 coordinates ofa, then we observe the following bound ors;:
0 1
XY a)?
(& ai)2 Di @Rsearch (J.%A (5.20)
i

j=1
We can obtain a somewhat decent solution by sequentially xinga; through ay to the values closest
to a. That is, we rst take a; = round(a;) = round("a;). Then we compute a, using Equation
5.17 and x ap =round( ap). This process continues fora;; 3 i N. The resulting xed value
of a is the \bootstrapped" solution (which we denote a°) that we mentioned earlier. Algorithm 2
shows how to obtain the bootstrapped solution giver& and the L and D matrices from the LDL T

decomposition of Q.

Algorithm 2 Integer Bootstrapping
1. function BOOTSTRAP (L;D;4)
2: N length(&)

3 a zeros(\)

4: a® zeros(N)

5: a; round(a)

6: for i 2;:::H do

. i1

7 a 8 i=1 (aj q )Li;j
8: return aP

55.1.2 Search Routine

Now that we have described sequential conditional xing, we are ready ¢ introduce the
search-and-shrink routine for nding the solutions of Equation 5.13. Note the use of the word

solutions, since technically there can be up to ¥ minimizers of Equation 5.13. However, as noted
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in [78], this is essentially never the case in practice. Even stillthe search method in LAMBDA
prescribes a way in which we can obtain theN ang candidate solutions ofa that are closest to a.
From these candidate solutions, we can evaluate and select our ILS solution

At the beginning, we considerRgegarch = 1 and chooseN ang initial candidates. For our rst
candidate we use the bootstrapped solutiora™ = aP. We then obtain N¢ang 1 other candidates
by keeping all their entries the same as” except for the last component, which alternately switches

to the next closest integer to aR, , i.e.

(1) —

= ab
(2) =af +1
al=a 1

ay) = af +2
ay” = aj + p
"V =ay p

At this point, we have found Ncang Solutions that are inside our search radius. We shrink
the search ellipsoid by settingRsearch = min r(@®) : 1 i Ncang , Which for this rst case
becomesRsearch = r(aNeand)), Next, the search continues starting from coordinateN 1, where we
take our new a to be our bootstrapped solution except now we change componef 1 to be the

next closest integer toay 1 and setay =round( ay). At this point, one of two things happens:

(1) If this new candidate a"®" satis es r(a"") Rsearch, then we update our list of candidates
by replacing the one that has the largestr value with this new candidate. We also set
Rseach =min r(@®) : 1 i Ncang . The search then continues by modifyinga™" at

componentN .

(2) Otherwise, a"" does not lie within the search ellipsoid, so we continue the searchtarting
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from componentN 2.

This process continues until all the components ofa have been considered and no new candidates
lie within the search ellipsoid.

To illustrate this process, Figure 5.6 shows the candidates and seen ellipsoids for the case
N = 2 dimensions and N¢gng = 6. It starts with the bootstrapped candidate at (1, 0), which is
labeled 1, and then considers the next 5 closest integer coordinatesrfa,. Together, these form
our initial set of 6 candidates. The dashed blue line shows th&®gearch €llipse corresponding to this
initial set of candidates. From here, we take the bootstrapped solution(1, 0) and adjust a; to
be the next closest integer, which in this case is 0. This point, (0, Q)is labeled 7 in the gure.
Since it lies within the search ellipse, we throw out candidate 6 ad shrink Rggarch to correspond
to candidate 5, which now is the candidate with the largest distance tocA. Since candidate 7 was a
success, move the search back up to the 2nd component, with its nextest integer value being 1.
This new point, (0, 1), is labeled 8 in the gure. Since it also lies wthin the ellipsoid, we throw out
candidate 5, replace it with this new candidate, and shrinkRgearch t0 correspond to the distance of
candidate 4. The same thing happens with the next search candidate, wbh is labeled 9, and the
search ellipse is shrunk further. After adding point 9 to our candidate list, the next point we try
is 10, but this point is outside of the search ellipsoid, so it is discated and the search moves back
down to the rst component again. This time when we try a new coordinate for a;, the subsequent
conditionally xed solution, which is labeled 11, lies outside of the sarch ellipsoid, and so no new
candidates can be found starting from the rst coordinate. Since thee are no new candidates and
we have started the search from each component &, the process is nished and the candidates 1,

2, 3,7, 8, and 9 form the 6 closest values daf to 4.

5.5.2 Cliques

The search-and-shrink procedure is an exhaustive search for the ILSolution that can be
fairly time-consuming. For this reason, LAMBDA applies a decorrelating transformation to a

and Q before performing its search. Various lattice reduction methods hee been successful in
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Figure 5.6: lllustrates the process of search and shrink, which seskhe best integer candidates
within a given ellipsoid of particular oat solution.

handling problems with correlated ambiguities of multi-frequency signals for a fairly high number
of dimensions [40]. For an e cient search implementation, dimensions p to 50 can be searched in
less than a minute. For problems with small variance, such as ours, emewithout lattice reduction
we nd that a search over up to 40 dimensions can be performed in leshin a minute (on one 2.4
GHz processor). However any additional increase in problem dimensioresms to quickly lead to
very long search times. For multi-frequency measurements and longvindows of data containing
many cycle slips, our problem dimension can easily reach over 150 dim&pns, making the standard
search-and-shrink routine impractical, even when using a decortating transform.

The high dimensionality of our problem would not be an issue if partitioned into completely
independent sets of variables, since then we could just split thearoblem into smaller problems.
Unfortunately, the consecutive occurrences of cycle slips that ase during harsh signal conditions
leads to widespread interdependence of slip amplitudes across themtire estimation window. This
interdependence manifests as the o -diagonal blocks ifQ », which e ectively couple the amplitude
estimates between adjacent slip epochs. The widespread interdendence that arises from this

coupling can be seen from the large o -diagonal entries of the oat solution pecision matrix Q i
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an example of which is shown in the third panel of Figure 5.5.

Considering the problem from the perspective of probabilistic graplical models (PGM) o ers
helpful insight on this problem. Such models represents variabke (e.g. cycle slip amplitudes) as
nodes and their inter-dependencies (e.g. non-zero values in theat precision matrix) as edges.
[33] considers the ILS problem from the perspective of PGMs and suggesthat such problems
typically have dependency graphs that are complete, i.e. all the vadables being estimated are
interdependent. This is also somewhat true for our case of inferringhe amplitudes of consecutive
cycle slips in a time series. Figure 5.7 illustrates the PGM corrsponding to the cycle slip problem
and how marginalizing the Gaussian process priors ultimately resuft in an approximately complete
dependency graph. We saypproximately because the interdependence between cycle slip amplitude
estimates does diminish over time, as we can see from the tapering efitries in the precision matrix
in Figure 5.5. In the context of PGMs, we describe this behavior usig the concept ofcliques A
clique is a maximal set of interdependent nodes; that is, it is a shiset of our slip amplitude estimates
each of which is interdependent with every other variable in the sbset. Figure 5.8 illustrates a
hypothetical PGM corresponding to the cycle slip problem where tle assumed maximal clique
size is 3. In reality, the size of cliques in an ILS model changes depding on the variables and
their interdependence. This concept is illustrated in the third panel of Figure 5.5, which shows
brackets along the main diagonal of the precision matrix that roughly indicate a few of the subsets
of interdependent variables. The concept of cliques is important inour two approaches to nding

the ILS solutions to our reduced model, which we discuss next.

5.5.3 Method 1: Search and Shrink Over Cliques

Our rst approach to the ILS search for high-dimensional problems is essntially to apply
search-and-shrink to subsequent cliques of the ILS model. We cathis method search-and-shrink

over cligues (SASOC) and the basic steps can be summarized as:

(1) De ne the set of cliques over the model.
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Figure 5.7: lllustrates the probabilistic graph structure of the cycle slip problem before and after
marginalization of the phase componentx. Nodes indicate sets of variables in the model and edges
imply conditional dependence between nodes. In this case, we skia complete graph for variables
z, indicating that all variables are interdependent.

Figure 5.8: lllustrates the concept of cliques in a PGM.

(2) Perform search-and-shrink forN¢ang candidates over the rst clique.

(3) Take the best candidate over the cliqueaP®st and x each variables at the beginning of the

clique that is not in the subsequent clique:a; = aP®st for each appropriatei.
(4) With those values xed, continue with search-and-shrink over the subsequent clique.

(5) Repeat this process until we have searched the last clique, atlwich point we x all remaining
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variables according to the best candidate.

We consider the xed solution of this process to be our ILS estimate. Wien de ning our set of
cligues, we can use the values of the precision matrix to choose maxahsets of interdependent
variables. The values of the precision matrix do not end up being exaty zero, and some threshold
on their magnitude would have to be used. Alternatively, for the way we actually implement the
algorithm, we can set some maximal clique sizé¢jque and assume that no clique for our model
exceeds this dimension. LargeN¢ique Captures more of the subtle variable interdependence (as
indicated by the values further o the main diagonal of the precision matrix) but also results in
a more computationally intensive search. In our implementation, we clooseNgjque = 20 for a
good trade-o between search delity and computational speed. Our imgdementation of SASOC is

outlined in Algorithm 3.

554 Method 2: Approximate Support Using Marginals

While SASOC adapts the search-and-shrink algorithm to be feasible oveour high-dimensional
problem, it is still somewhat ine cient since it performs a fresh search over an entire clique for
almost every variable in the model. As such, we propose another algorithmwhich is to bound the
support of the joint posterior on cycle slip amplitude sequences usig approximations of its marginal
distributions at each epoch. We call this algorithm Approximate Support Using Marginals (ASUM).
It is inspired by the work from [87]. For a continuous joint-normal random vector v with mean
and covarianceQ, if we partition v into vi and v, then its joint distribution is bounded by the

product of its marginals:

p(v)= N (v;; Q) p(vi)p(v2) = N (vi; 1;Q1)N (v2; 2;Q2) (5.21)

From this we can say that the support of p(v) must coincide with the supports of both p(v1)
and p(vz2). We can apply this concept when evaluating the posterior for z, starting rst with
the marginal distribution of slip amplitudes at individual epochs and then combining successive

groups of epochs. Since the variances are small, the marginal support igrstrained and remains
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Algorithm 3  Find ILS solution using search-and-shrink over cliques
1: function SASOC(L;D;8a;Ngiigue; Ncand)
2: N length(2)

Rsearch 1

candidates  zeros(Ncand; N)

candidatesdist2  zeros(Ncand)

count O

dist2  zeros(N)

a zeros(N)

a zeros(N)

10: step zeros(N)

11: al0] 4[0]

12: a[0] round(a0Q])

13: ipase O

14: done False

15: while not done do

16: if dist2[i] < R search then

17: if 1<ipaset Ncique 1then

18: . if we we have not yet reached the end, keep recursively computing

19: i i+l

20: ali] 4afi] L[i;0:iJ(al0:i] a[0:i])

21: ali] round(ali])

22: dist2[i] dist2[i 1]+ (ali] a[i])?=DJi]

23: if afi] ali]> 0then

24: stepi] 1

25: else

26: stepli] 1

27: else

28: . if we reach the end, then store the found candidate and try next valid nteger
29: candidatesjmax;0:N] a

30: candidatesdist?[imax]  dist2[i]

3L imax  argmax(candidatesdist2)

32: Rsearch  candidates dist2[i max]

33 ali] ali] +stepl[i] . go to next valid integer
34: dist2[i] dist2[i 1]+ (a[i] ali])?=D]Ji]

35: stepi] stepli] sign(stepii])
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36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:

51:
52:
53:
54:
55:
56:

57:

else
. exit or move down
if 1 ipase then
if ipase+ Ncigue >= N then
done True
else
. X rst clique variable using best candidate so far
a candidates[argmin(candidatesdist2);0 : N]
ali] afi] L[i;0:iJ(a0:i] a[0:i])
dist2[i] (a[i] a[i])?=DJ[i]+dist2[i 1]
. move ipase Up and reset candidate search for next clique
ibase ibase"' 1
candidatesdist2[0 : N] 1
Rsearch 1
imax  argmax(candidatesdist2)
else
. move down
i1
ali] ali] + stepli]

step stepi] sign(stepifi])
dist2[i] (ali] a[i])?=D[i] +dist2[i 1]

return candidates; candidatesdist2




123

relatively small even as it exponentiates when we combine multipleslip epochs. We still have
to be careful though; the discrete Gaussian is a tricky distribution to work with. While the full
discrete distribution is exactly proportional to the full continuou s distribution evaluated at the
lattice points, its marginals are in generalnot proportional to lattice-samplings of the continuous
marginals. Nevertheless, we have found empirically that the sampleaontinuous marginals still
provide a good enoughapproximation of the support of the actual discrete marginals. That is, if the
continuous marginal evaluated at a point is negligible, the discrete margial will also be negligible.
If the value of the continuous marginal at a point is non-negligible, the dscrete marginal at that
point may be non-negligible.

We must also be aware of how the size of the approximate marginal support gws as we
introduce more slip epochs. As we already mentioned, because the vances in the oat posterior
are small we nd the size of the marginal support at each epoch is small enalh (around 1-4 points)
that the problem remains tractable over several slip epochs. For exaple, if we expect at most 4
non-negligible slip amplitudes per epoch and our computational resouks are limited to evaluating
a distribution for around 1000 lattice points at a time, then we can combine around 5 epochs
(since £ 1000). Eventually, depending on the structure ofQ , and the available computational
resources, as we continue to combine marginals evaluating the distritiion will become infeasible.
At this point, we want di erent chains of approximate supports to be as independent as possible.
For this reason, we determine how to combine marginals by recursivglpartitioning our variables
according to their conditional independence.

To implement the ASUM algorithm, we rst recursively partition the  oat posterior along
slip epochs to create a tree of maximally independent subsets of viables, where conditional inde-
pendence is assessed through the maximum absolute value of entries tietsuperdiagonal blocks
in the precision matrix Q % This process is outlined in the \partition" function from Algorithm
4. Once we patrtition the data down to individual slip epochs, we samfe the continuous marginal
density for each slip epoch as an approximation to the actual discrete @rginal. Let ¢ be the

grid of admissible points for a single slip epoch; e.g. if we again considslip amplitudes between
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4 cyclesthen o=1f 4, 3 2, 1;0;1;2;3;49%. We approximate the integer-valued marginal
by evaluating each point in ¢ according to Equation 4.28 then normalizing by the sum of the
results. We select theNyeep most probable points from o according to their continuous marginal
probability. We keep track of those points as the approximate support of he marginal. For the
next iteration, we consider pairs of epochs with approximate suppors 1 and » and we evaluate
Equation 4.28 for each point in 1 2. This process continues in the next iterations, eventually
expanding the marginal to include all slip epochs. At the end, the @ll distribution is evaluated over
the candidates from the full approximate support and the most probable @ndidate is chosen as our

solution. Algorithm 4 shows how this process can be implemented tlaugh a recursive function.

5.6 Method Summary and Computational Considerations

In summary, our approach to cycle slip estimation consists of four main stps: 1) Compute
the sparse oat estimate, 2) detect slips, 3) compute reduced systemmodel, 4) search for the best
integer candidates in the reduced ILS model. Under our stated assumpins, this estimate is equiv-
alent to the MAP estimate, and we use it to correct for cycle slip occurences. These steps are
further outlined in Algorithm 5. Also, Figure 5.9 illustrates our entire process for addressing cycle
slip occurrence in the real scintillation data that we present in Sction 5.7.2. This includes deter-
mination of appropriate covariance hyperparameters along with the detetion of slip occurrences
and bounding/estimation of slip amplitudes. In addition, source code examples for implementing
and applying this cycle slip mitigation approach are provided at the SeN& Lab GitHub page:
(https://github.com/cu-sense-lab/cycle-slip-estimation).

Before we dive into the results of applying this algorithm, there area few remaining computa-
tional aspects of the approach that we should discuss. When searching faine ILS slip amplitudes
estimate, we proposed two methods. We discussed how the rst mébd, SASOC, is an extension of
the traditional ILS search-and-shrink algorithm. In that sense, SASOC may be a more approach-
able to those familiar with the search-and-shrink approach. The runtime and delity of the SASOC

estimate depend on the maximum clique sizéN gjique, While for ASUM the performance depends on
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Algorithm 4  Recursively approximate support of ND (; Q) using continuous marginals
1. function Partition ( , Q)

2: . Find separating variable corresponding to the superdiagonal block wit the smallest value
3 . This can also be done using the precision matrixQ ! instead of Q

4: N length( )

5: imn O

6: min_value 1

7: for i 1;::::N do

8: superdiagonalmax  max(abs(Q[O0 :i;i : NJ]))

9 if superdiagonalmax < min_value then

10: min_value  superdiagonalmax

11: i min i

12: return 1;Q1; 2,Q>2
13: function ASUM (; Q; o)
14: if size@Q) K then

15: m( o) normalize(N ( o; ; Q))

16: bk f  zii2 ojm( z)> thresholdg

17: else

18: 1,Q1; 2,Q2  Partition ( , Q)

19: 1 ASUM ( 1, Ql)

20: 2 ASUM ( 2, Q»)

21: 3 1 2

22: m( 3) normalize(N ( 3;; Q))

23: ok Z'2 3im( 2')>N i, largest value ofm( 3)g

24: return bk
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the maximum number of points Nyeep in the approximate marginal supports. For su ciently large
Nciique and Nyeep We found that the SASOC and ASUM solutions were almost always identical. We
did nd discrepancies when substantially increasing the estimaion window size to 40 minutes (as
opposed to our the approximately 8-minute windows whose results we #agally show) for the Hong
Kong scintillation dataset presented in Section 5.7.2. All the resultswe show in the next section
are for 500-second windows of data or less, and the SASOC and ASUM algorithms agreetheir
found solutions when usingNjique = 18 or Nyeep = 100. Unfortunately, we are not able to provide
a rigorous proof regarding the estimate delity (i.e. does the found ®lution actually equal the ILS
estimate), but the agreement between the two algorithms suggests thaboth methods generally
work. More substantial proof of their delity comes from the results we present in the next section.
It is also worth noting that we did nd that the ASUM algorithm outperformed SASOC in terms of
runtime. As an example, for the 8.5 minutes of 20 Hz triple-frequency aintillation data presented
in Section 5.7.2 we found that the ILS search takes between 40-45 seconds ASOC but only
5-10 seconds for ASUM to run on one 2.4 GHz core.

A very important aspect of the approach, which we only brie y mentioned a few times in this
chapter and Chapter 4, is how we implement the mathematical operationsn a computationally
e cient manner. First, we note that the only densely-evaluated matrix is Q ». The operatorsA,
B, Bieg, and Q can all be e ciently applied in O(n) time and only require O(n) storage or less.
The operator Qy is block-Toeplitz and can be stored inO(n) space and applied inO(nlog(n)) time
using FFT-based methods. Therefore, the operatoQ, can be applied inO(nlog(n)) by combining
A, Qx, and Q operators. This is similarly true for the ; operator from Equation 5.11. Inverses
of Qy and ; can be applied using conjugate gradient descent, and the e ciency of tis operation
will depend on the number of iterations needed for convergence. Thegradient descent operations
and computation of Q » are the computational bottlenecks for our approach. In general, runtime
will depend on the window size, measurement sampling rate, and thaumber of detected slips. As
an example, for the 8.5 minutes of 20 Hz triple-frequency scintillaton data presented in Section

5.7.2 we found that the reduced model covariance calculation takes beten 3-4 minutes to run
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on one 2.4 GHz core. Again, we emphasize that this algorithm is designed and iemded for batch
post-processing. However, this runtime could be substantially irproved with more focus on e cient

implementation, which will be an important topic of future work.

Algorithm 5 Demonstrates full cycle slip mitigation algorithm
1. . Step 1: compute sparse oat estimate
z  MM(y;Qy;B)

2
3:
4. . Step 2: detect slips

5 tget f t2 tO: i 2)jj1 > aget9

6. . Step 3. compute reduced model
7. P P

. 2 2

8: QP2 PQ ,PT

9.

10: . Step 4-a: nd best slip amplitude sequence over the approximated gport

11 o f NpjiirpNpg€ . N is the maximum slip amplitude under consideration
120 approx ASUM ( sz QPQ! 0)

13: p( approx) normalize N approx ; PQ;QPQ

14:  Zmap argmax(p( approx))
15:

16: . Step 4-b: alternatively, nd best slip amplitude sequence usingsearch-and-shrink over cliques
17: L;D  1dI(QR,)

18: candidates candidatesdist2  SASOC (L; D &; N¢lique; Ncand)

19: ipest argmin(candidates dist2)

20:  ZmapP candidatesj pest]

57 Results

Having established a methodology for detecting slip occurrencesye now turn to evaluat-
ing its performance on both simulated and real GNSS datasets that are impaetd by ionosphere

scintillation.

5.7.1 Simulated Data

We simulate realistic ionosphere scintillation measurements withparameters corresponding
to the S4, , and C=Ng of Window 1 from Table 5.1. Panels a and b from Figure 5.10 show the
C=Ngy and phase for the simulated triple-frequency measurements. As isotbe expected, we see

correlated fading of C=Ng and uctuations in the phase measurements. The overall phase trendsi
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Figure 5.9: Block diagram describing the inputs and processes invodd in the cycle slip estimation
method developed in this paper.
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due to the ionosphere TEC, which for this case of simulated data corrgmnds to the model phase
screen. Panel ¢ shows the di raction error, which is obtained by sukracting the phase screen from
the phase measurements. The diraction error contains both noise and osle slips, and the dashed
black lines indicate the truth estimate of the slip bias sequence dfained by taking the TVD t of
the di raction error, which we denote zyue. As is typical for scintillation of this magnitude, the L2
and L5 signals show many simultaneous cycle slips.

Looking closely at the correspondence between the diraction error, ®& see it is sometimes
not so clear what constitutes a cycle slip in the truth reference.For instance, consider the shaded
region between 320-340 seconds (marked Region 6); there is a large uctuation the di raction
error for the L5 signal and the truth reference indicates that the phaseslips in one direction and
then slips back several seconds later. There is a similar but lesseuctuation in the di raction
error for the L2 signal, but the truth reference does not count them as gcle slips. While some
slips have an undeniable and lasting e ect on the phase bias, perhapshése instances are better
interpreted as large uctuations in the phase due to di raction. In fact, these phenomena are the
main contribution to the high baseline rate of missed detections that ve saw in Figure 5.4. The
takeaway here is that it is better to judge our cycle slip estimationresults based on their similarity
with the truth reference over time rather than evaluating their c orrespondence for every single slip
occurrence.

Panels d and e show z and z, i.e. the sparse oat amplitudes and the MAP bias estimates,
respectively. Also, the dashed black lines in Panel d indicate thehreshold used for detection. We
note how the simultaneous slips in the L2 and L5 signals are detected on &L1 signal in the oat
estimate. The shaded region between 270-300 seconds (marked Region 5) shamge example of
this. Fortunately, as we see in the MAP estimate, the xed amplitudes are correctly estimated as
occurring on L2 and L5, and not on L1. Comparing Panels ¢ and e, we observe long-teragreement
between the truth reference and MAP estimate of the slip bias sequees; from beginning to end
they both show the same overall change in phase bias for each of the thre@sals. In general,

the MAP estimate shares the same slip amplitudes as the truth refenece. One important case is
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between 170-180 seconds (marked Region 4) where the MAP estimate correctthows a 2-cycle
slip in L5, demonstrating the algorithm's ability to correctly deal wit h di erent slip magnitudes.

In addition to the overall agreement, this example demonstrates suaessful estimation of two of the
most di cult-to-detect slips that can occur for triple-frequenc y GPS signals. The rst is a 1-cycle
slip on just the L1 signal, which occurs between 80-100 seconds (markedegion 2), and the second
is a simultaneous 1-cycle slip on all three signals, which occurs baten 440-450 seconds (marked
region 7). These are normally the types of slips that other cycle slip algathms struggle with, even
under moderate conditions, and correct estimation in this instance $ a testament to the power of
using an extended window of high-rate measurements.

Panels f, g, and h show the IF, GIF, and GF phase combinations. In each pamhethe gray
line depicts the combination obtained using the raw measurements tile the colored line shows the
combination after correcting the measurements using the MAP cycle Ifp estimate. Additionally,
for the GF combination (which is scaled to be in TEC units), we show the model phase screen
(also scaled to TEC units) in the black dashed line. We see that the F and GIF combinations
are mostly at after the correction, whereas the raw combinations show many jumps. The GF
combination after correction agrees very well with the phase screen énd, except for one instance
between 40-70 seconds (marked Region 1). Interestingly, the MAP estimat of slip amplitudes at
these epochs are actually opposite of those in the truth referencet is not clear what exactly causes
the algorithm to fail here, but it is worth pointing out that the correct ed IF and GIF combinations
remain at during this time, even with the erroneous slip amplitud e estimates. More importantly,
the algorithm correctly identi es the broader trend in the phase, and the slips revert after a dozen
seconds for a net-zero change in cycle bias. There are only a couple otheotable discrepancies
between the MAP estimate and truth reference. The rst occurs with the L5 slips between 320-340
seconds (marked Region 6). As we argued earlier, these missed slips arerm of an artifact from
generating the truth reference using the phase screen and are not aifure of the algorithm. The
other is between 115-130 seconds (marked Region 3) where, according to theith reference, two

consecutive slips occur on the L2 and L5 signals with very short delaylnstead of on L2 and L5, the
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MAP estimate interprets these slips as occurring (in the oppositedirection) on the L1 signal. This
discrepancy is most likely due to the proximity of the detectionsand the ambiguity of slips on the
L1 signal versus simultaneous slips on the L2 and L5 signals. Similar to thether discrepancies, it
is of little consequence to the overall agreement in the cycle biaseguences.

To supplement the analysis of this simulation example, we also analyz¢he cycle slip es-
timation performance for a batch of simulated measurements. First we an 100 simulations of
scintillation measurements over a 5-minute window using scintlation parameters from Window 1.
We then applied the cycle slip estimation algorithm for each simulationrun and computed the error
due to cycle slips both before and after correction using the MAP cyd slip estimate. For each of
these errors, we subtract o the mode of the cycle bias. This is becae the overall phase bias is not
well-captured by the model we are considering, which is designed dnto estimate cycle slips. We
also neglect any errors occurring within the rst or last 10 seconds of he data window, as faulty
estimations during these times are more prevalent due to the lack of masurement context preceding
or following the slip detection. Figure 5.11 shows the distributiors of these errors for each signal,
with the lighter and darker colors indicating the error before and after correction, respectively. The
errors before correction reach past 5 cycles over the 5-minute window. Meanwhile, the errors
after correction are signi cantly reduced, showing no errors 90% of thetime on L1, 85% of the
time on L2, and nearly 80% of the time on L5. Moreover, the errors are essentigliconnedto 1
cycle. We identify 3 causes of the errors that persist after corregon. 1) The algorithm sometimes
simply fails, like in Region 1 of the simulated example in Figure 5.10. l@ally, in these scenarios
the errors will not persist, as was the case in the Region 1 example. 2) Ehalgorithm estimates
slip correctly, but at slightly di erent times compared to the tru th reference, like in Region 5 from
the simulated example. We do not view these errors as a failure of the gbrithm, but rather as
a byproduct of the way the truth reference is generated and the amlguity in how scintillation
uctuations are interpreted. 3) Similarly, sometimes phase uctuations that are interpreted as slips
in the truth reference are neglected by the algorithm, like in Region6 from the simulated example.

Since these types of cycle slips are not persistent, we do not codsr it a failure if the algorithm
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does not identify them. It is di cult to discriminate the e ect s of these latter two causes of errors
from actual failures of the algorithm, but we expect that the results sunmarized in Figure 5.11
underestimate the actual performance of the algorithm. Overall, theseresults in simulations of
scintillation phase measurements suggest that, so long as the algorithns iproperly tuned, it should

perform well on real scintillation measurements.

5.7.2 Real Data

57.21 Hong Kong

Here we discuss the results of applying the mitigation algorithm to thereal scintillation
dataset from Hong Kong. First we assess results for triple-frequency easurements. Figures 5.12
and 5.13 contain panels that illustrate the results for the two windowsof the dataset identi ed in
Figure 5.2. Similar to Figure 5.10, panels a and b show the ENg and phase for the three signals.
Panels c and d show the sparse oat cycle slip amplitude estimates z and the the bias sequence
estimate z, respectively. Panels e, f, and g show the IF, GIF, and GF phase conibations before
and after cycle slip correction. Just like the simulated example, v see correlated slip estimates
in the L2 and L5 signals, and relatively few slips in the L1 signal. Also, for e correlated L2/L5
slips, we see how the oat estimate again detects these slips as occimg on the L1 signal. For
example, this behavior occurs in Region 3 of Window 1 or Region 5 of Wind® 2. The similarity
in behavior of the oat and MAP cycle slip estimates between the simuhted and real data is one
piece of evidence that the algorithm is behaving properly.

Since we have no truth reference with which to rigorously assesdé performance, we turn
to phase combinations as another way to evaluate the results. Just likén the simulated example,
after correction the IF and GIF combinations remain at throughout the dur ation of the window
and the GF combination is more smooth. If the algorithm does fall, it is likely to do so in regions
where these combinations show noisy or uctuating behavior, as was thecase in the simulated

example. For instance, Region 1 marked in Window 1 shows an instance whe the IF, GIF, and
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Figure 5.10: Example of simulated triple-frequency scintillation data containing cycle slips. Panels a
and b show the G=N and phase for the three signals. Panel ¢ shows the di raction error contaiing
cycle slips along with a truth estimate of slip occurrence. Panel gdhows the oat estimates of the slip
amplitude sequences 2z obtained through the sparse estimation method. Panel e shows the MAP
estimate of slip bias sequences. Panels f, g, and h show the IF, GIF, driGF phase combinations
respectively, with gray and colored lines corresponding to the combations obtained before (raw)
and after (corrected) subtracting o the MAP slip bias estimate z.
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Figure 5.11: Distribution of phase error due to cycle slips before (rayvand after (corrected) sub-

tracting MAP cycle slip estimate. The distribution is generated from histograms of the phase
error over 100 simulations of scintillation measurements over 5-minw windows, with simulation

parameters corresponding to scenario 1.

GF all show a suspicious bump. During this time, the algorithm estmates a simultaneous 1-cycle
slip on all three signals, which is the most di cult cycle slip ampli tude to discriminate against

the no-slip hypothesis. Another example is Region 4 marked in Window 2where the GF shows
signi cant variation and the IF shows an increase in noisy uctuations. T he algorithm estimates

two slips on the L1 signal during this time, which is generally rare anddi cult to identify, so it

is quite possible at least one of these was a mis-estimate. On the othd&wand, the GIF remains

quite at throughout this period and overall the occurrences of slips in the MAP estimate are not

suspiciously abundant.

To more rigorously quantify this last statement, we can use the resul$ from Chapter 2 where
we modeled cycle slip occurrence as a Poisson process and charagtt the slip occurrence rate
for di erent scintillation conditions (using S4, , and C=Ng parameters). For each window of data,
Table 5.2 compares the predicted nhumber of slips (1-sigma) and the actual number of estimated
slips that occur on each signal. We see that for both windows, the numkreof estimated slips on

the L2 and L5 signals is within the 1-sigma bounds of the predicted numbeof slips. However,
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Window 1 Window 2
L1 L2 L5 | L1 L2 L5
Predicted | 1.6 1.2 147 38 186 43|12 1.1 118 34 148 39
Estimated 10 13 16 6 10 15

Table 5.2: Comparison of predicted number of slips based on results fromh@pter 3 and the actual
number of estimated slips on each signal.

the number of slips estimated on the L1 signal is larger than the prediatd number of slips in both
instances. There are a couple instances in Window 1 where the estated L1 slips are close together
and cancel out, just like in the example from Region 3 of the simulated eample in Figure 5.10.
Aside from this, it is possible that some of the L1 slip estimates are enrs, e.g. the L1 slips in
Region 4.

It is interesting to compare the results for triple-frequency ard dual-frequency estimation.
Figure 5.14 shows the results for estimating slips using only the L1 ahL2 phase measurements.
The panels are similar to those shown in the triple-frequency examles, except for the fact that panel
f now shows the GF combination as there is no dual-frequency phase-gnGIF combination. Just
like for the triple-frequency results, we see much smoother pise combinations after the correction
using the estimate slip bias. Comparing the slip bias estimates in gnel d, with those from the
triple-frequency results in Figure 5.13, we see that the estimateare identical in the latter half of
the window. In the rst half, however, there are two key discrepancies around 44970 and 45090
seconds, where for the dual-frequency results we see slips oa@ug on the L2 signal instead of the
L1 signal. Given that we saw an overabundance of L1 slips in the triplesequency estimate, it
leads us to believe maybe some of the triple-frequency L1 slip éstates were erroneous. It further
suggests that maybe the priors for z should not be uniform across di erent signals but instead
should be weighted to re ect the smaller probability of occurrenceof L1 slips in comparison to L2
or L5. This will be an interesting topic for future investigation. Over all, despite the extra L1 slip
estimates, the algorithm appears to show good performance on the real stillation datasets in

terms of consistency and smoothness in the slip-corrected phase cbmations.
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Figure 5.12: Detection and estimation results for Window 1 of the real saitillation data set. Panels
a and b show the triple-frequency G:=No and phase, respectively. Panel ¢ shows the oat estimates
of the slip amplitude sequences z obtained through the sparse estimation method. Panel d shows
the MAP estimate of slip bias sequences. Panels e, f, and g show the ,Il5IF, and GF phase
combinations respectively, with gray and colored lines correspondip to the combinations obtained
before (raw) and after (corrected) subtracting o the MAP slip bias estimate z.
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Figure 5.13: Detection and estimation results for Window 2 of the real saitillation data set. Panels
and layout are the same as in Figure 5.12.
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Figure 5.14: Dual-frequency detection and estimation results for Windw 2 of the Hong Kong
scintillation data set. Similar to Figure 5.12, panels a and b show the GNg and phase, respectively.
Panel c shows the oat estimates of the slip amplitude sequences z obtained through the sparse
estimation method. Panel d shows the MAP estimate of slip bias sequares. Panels e and f show
the IF and GF phase combinations respectively.
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Units | Ocean Re ection Mountaintop RO

C=Np | dB-Hz 22.00 20.00
2 m? 20 .05
G S 20 12

2 m? 1 0.001
| S 90 90
2 | cycleg 0.75 0.2
20 15

Table 5.3: Estimation window C=Ng and hyperparameter values for ocean re ection and mountain-
top RO examples.

57.2.2 Ocean Re ection

Given the topic that we set in Chapter 1, it is important that we demonst rate the algorithm's
e ectiveness for other types of harsh signal conditions than just di ractive scintillation. As such, we
applied the cycle slip mitigation algorithm to the ocean re ection dataset. When doing so, we need
to adjust the model hyperparameters for the new scenario to achievehe best performance. In this
case we manually tuned each parameter to achieve adequate performance anahtime. The values
we used are listed in Table 5.3. Figure 5.15 shows the results of applygnthe algorithm for the
ocean re ection dataset. Since we do not have as good a model for the nalispersive component,
this time we see more variation in the IF phase combination and nearly comietely at behavior
in the GF phase combination. After around 65 seconds, the algorithm appearsa perform quite
well based on the smooth results in the IF and GF combinations. Beforehat epoch, the algorithm
behavior appears to fail, however this period of the data most likelycorresponds to a non-coherent

signal [64], and so we do not consider it to be an actual failure of the algorithm

5.7.2.3 Mountaintop RO

Our nal results are for the the mountaintop RO data that we introduced in Chapter 1
Section 1.4.2. In this case we consider measurements on only the L1 signalhich showed several
deep fades and had overall quite low ENg during the estimation window we chose. In this dataset,

the navigation bits have not been removed, and so the signal is actually icted with half-cycle
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Figure 5.15: Dual-frequency detection and estimation results for the GISS-R ocean re ection
dataset. Similar to Figure 5.14, panels a and b show the ENg and phase, respectively. Panel ¢
shows the oat estimates of the slip amplitude sequences z obtained through the sparse estimation
method. Panel d shows the MAP estimate of slip bias sequences. Paset and f show the IF and
GF phase combinations respectively.
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instead of integer-cycle slips. To accommodate for this, as brie y mation in Section 4.2, we simply
adjust B to use 1=2 wavelengths. Again, we hand tune the covariance parameters (providkin
Table 5.3) to achieve decent results with reasonable runtime. Note thatin the single-frequency
case, specication of bothG and | phase components is somewhat redundant since the single-
frequency signal measurements cannot take advantage of the dispersivatmre of the ionosphere
e ect. Nevertheless, slips using a single frequency can still é estimated and the model does not
require any special modi cation. Figure 5.16 shows the results of apping the detection and
estimation procedures. In panel ¢, we see very rapid occurrence detected slips over very short
spans of time. Panel d shows the estimated slip bias sequence that nogably follows the phase
trend in the raw measurements, which is presumably due to cyclslips. Despite the very low G=Ng
level, we are able to estimate slips in the single-frequency datadrause the phase components have
little variation. Panel e shows the corrected phase measurements,ow showing much smoother
behavior. With only one signal frequency, it is di cult to assess the delity of the corrected phase.
One way to do this would be to compare the corrected phase with its gxected variations due
to physical parameters, e.g. in this case due to tropospheric water vag content. For instance,
the in [85] the cycle slip correction results for ocean-re ected gjnals are validated by comparing
corrected phase variations with sea-surface height variations obtainedia an independent altimetry

experiment. Such validation is an interesting topic for future study.

5.8 Summary and Discussion

In this chapter, we presented a comprehensive approach for deteaty and estimating cycle
slips. We introduced a novel method for batch cycle slip detedgbn over a window of measurements,
and we assessed the performance of the approach by applying it to high-ratmulti-frequency mea-
surements in both simulated and real data. The results of applying thé method to simulated
scintillation data sets indicate that it can correctly estimate the most di cult-to-detect slip ampli-
tudes and that the MAP estimate can correctly identify at least 80% of the gycle slips. For the real

datasets, we applied the method for dual- and triple-frequency GPSneasurements for the cases
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Figure 5.16: Single-frequency detection and estimation results for tb Hawaii mountaintop RO
dataset. Similar to Figure 5.14, panels a and b show the ENg and phase, respectively. Panel c
shows the oat estimates of the slip amplitude sequences z obtained through the sparse estimation
method. Panel d shows the MAP estimate of slip bias sequences.
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of diractive ionosphere scintillation and weak ocean re ection. There is no pure truth reference
with which to validate results on the real scintillation measuremerts, however, the smoothing of
the corrected phase combinations suggests that the algorithm is e ectig. When the algorithm does
fail, it appears to be associated with estimations of L1 slips over simitaneous slips on L2 and L5.
While we mostly focused on ionosphere scintillation in our resultswe intend for this work
to be applicable in a wide variety of harsh signal environments. GNSS mote sensing is ripe
with opportunity to apply this method, including semi-coherent ocean re ections used in GNSS-
R, or tropospheric scintillation e ects on low-elevation and radio ocaltation signals. In addition
to remote-sensing applications, this work may also be useful for batc estimation of cycle slips
occurring in weak signals on dynamic platforms. A major part of the e ort in this work was
devoted to identifying appropriate covariance hyperparameters for nodeling phase components and
measurement noise. The key to generalizing this algorithm to other hash signal scenarios is nding
appropriate hyperparameters, although the values we use in this work sbuld be a good starting
point. We also made a number of stated and implicit assumptions about howto characterize the
phase components, such as our use of the Makrn kernel with = 3=2 and our characterization
of noise and unmodeled errors, which in this study was held constantwer time. The approach
we presented can easily be adapted to incorporate a time-varying modiéor noise variance, which
may help improve mitigation capabilities under certain scenarios. t will be important to reassess
these assumptions and characterizations of the signal phase components aadors for these new

scenarios.



Chapter 6

Summary and Conclusion

In this dissertation, we explored the origin and nature of cycle slipsn GNSS phase measure-
ments, with an emphasis on cycle slip occurrence under harsh signabnditions. This problem is
challenging because of 1) the occurrence of numerous consecutive leyslips, 2) presence of large,
uncertain phase component variations, and/or 3) presence of excessive 8ei In chapter 2, we
focused on characterization of cycle slips in simulations. We showeldow the e ects of phase tran-
sitions and noise can create many consecutive cycle slips, and we quaet the rate of this slip
occurrence for the case of di ractive ionosphere scintillation. In &apter 3, we took a closer look at
cycle slips in real multi-frequency phase measurements collesdl during scintillation events and we
provided a performance analysis of two algorithms designed to mitigateheir occurrences. The rst
of these algorithms used measurement combinations to detect and estate cycle slips and yielded
a very high rate of false detection when applied to one of the scintillabn datasets. The second
algorithm was a state-space sequential algorithm that made use of the signallo to adaptively
Iter the phase measurements and detect cycle slips. While thismethod performed signi cantly
better than the method using phase combinations, it still introduced a large number of false cycle
slips into the resulting measurements. The ltering algorithm is of particular interest because it
had previously been applied with very good performance to scenariosith low signal C=Ngy. We
claim that the case of ionosphere diraction, and any harsh signal conditionsthat contain phase
transitions, will be di cult for sequential algorithms to address. T his claim stems from our char-

acterization of phase transitions in Chapter 2, where we saw how an \up-dse" view could not
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necessarily reveal whether or not canonical fading corresponds to a dgcslip. Our conclusion from
these results was that e ective cycle slip mitigation under harsh $gnal scenarios would require use
of an extended window of high-rate measurements when detecting andseémating slips.

In order to quantify how long a window and how high a sampling rate are neessary, in
Chapter 4 we introduce a general probabilistic model for estimatingcycle slips in GNSS carrier
phase measurements. In particular, we modeled the non-disperg&vand refractive ionosphere phase
components as stationary Gaussian processes. We discussed noise ntindeand how to choose
covariance parameters. Then, we used our model to illustrate how widow duration and sampling
rate impact false detection rates under 4 hypothetical scenarios, shwing that we can greatly de-
crease false detection probabilities for a single slip when using 20 Hor faster) multi-frequency
measurements over at least 16 seconds. However, our characterizatiomifn chapters 2 and 3 demon-
strate that it is possible for multiple cycle slips to occur over sich timescales. This led us into the
culminating problem from this dissertation: how to reliably detect and estimate the occurrence
of multiple cycle slips under harsh signal conditions. In Chapter 5, v provided our approach,
the steps of which we summarize as 1) compute the sparse oat estimate, 2)se the sparse oat
estimate to detect slip occurrences, 3) compute the reduced sism model for the detected slips, 4)
search for the best cycle slip amplitudes. The results demonstrat that this algorithm is capable
of accurately detecting and estimating cycle slip occurrences itboth simulated and real datasets,
including both single-, dual-, and triple-frequency measuremets.

The approach we introduce has an advantage over other cycle slip mitigationechniques be-
cause it uses all the relevant measurements both before and after slgccurrences when estimating
their amplitudes. Our development and algorithms also allow for its ug with high-rate measure-
ments and any number of signal frequencies. However, this power andexibility come at a cost.
The algorithm is fairly computationally expensive compared to most other cycle slip algorithms.
One of the major challenges in this work was in nding ways to make the ajorithm computationally
feasible for large windows of high-rate measurements without compromiisg its power and exibil-

ity. Our use of stationary Gaussian processes, the L1-norm regularizatiomptimization approach
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during detection, and our new approaches to searching for integer soligns in high dimensions
(SASOC, ASUM) were key elements to our success in overcoming thihallenge. Also, unlike many
other mitigation strategies, the algorithm we present is designed for bath post-processing. Ex-
ploring how well the model principles from Chapter 4 can translate b sequential or near-real-time
processing will be an interesting topic for future study.

While our model and algorithms are powerful and perform well, we stillmade a number
of assumptions that are possibly too rigid or over-simplifying. One of hese was our assumption
about noise modeling. We mentioned more sophisticated options for noise odeling in the case of
ionosphere scintillation, e.g. those in [73]. We expect that using a nge covariance that adapts based
on estimates of signal GNg, similar to the cycle slip Itering algorithm [85] or many carrier track ing
approaches (c.f. [95], [73], [83]), could lead to better performance undeertain circumstances. Also,
our modeling of the time seriesG(t) and I (t) relied on assumptions about the behavior of these
components. In particular, it will be valuable for future studies to more fully characterize when
they can adequately be modeled as stationary and what are appropriate covance models. As
we discussed in Chapter 4, for the case of ionosphere scintillation, dactive uctuations can be
highly correlated. It would be interesting to see to what extent diraction can be absorbed into
the refractive ionosphere phase component and how that a ects its covaance structure.

Finally, while throughout this dissertation we heavily focused on the mitigation of the cycle
slips themselves, it is important to also consider the actual end-goalhat motivated us to address
these cycle slips in the rst place: obtaining accurate, slip-fre phase measurements for our pre-
cision remote-sensing or navigation applications. Throughout our result section, we showed the
\smoothed" phase combinations obtained after applying a correction usiig the estimated cycle
slips, which shows some indication that we have removed the slipgduced measurement biases. It
will also be important for some applications to know when cycle slips wre corrected, as well as any
potential statistics for the reliability of that correction. We prese nted limited results on the the-
oretical performance of the algorithm with an emphasis on ionosphere di ration conditions since

those are the ones we can simulate. It will be valuable to further invetigate algorithm performance
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under other harsh signal scenarios.
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Appendix A

Linear Combinations

Here we derive the analytical expressions for orthogonal IF, GF, and GIF cominations of
triple-frequency carrier phase measurements. The derivation m from work originally done in
[13]. Recall that GF and IF combinations satisfy:

X
=0 GF (A.1)
k
X
kCk = 0 IF (A2)
k

Then the coe cients satisfying GF and IF constraints for triple-f requency can be found by taking

the cross product1 ,wherel=[1;1;1]and =[ 1; 2; 3]
2 3
2 3
CaIF = 3 1 (A3)
1 2

Note, cgir is de ned by a linear subspace ofR® and so its GIF properties are preserved under

scalar multiplication. The IF and GF coe cients that are orthogonal to the se GIF coe cients can
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then be found by takingl cgr and CGE:

201 2) 3(3 1)

Cr=83(2 3 (1 2 (A.4)

HOOOCODY N

(s 1) 202 3)
2 3
21 2 3
CGg = gz 2 3 1 (A.5)

(A.6)

Again, the properties of these coe cients are invariant under scalar mutiplication.



Appendix B

Hyperparameter Estimation

We want to nd a set of values for the covariance hyperparameters 2, ,2 and | that
generalize a large set of simulated scintillation measurements. To dthis, we optimize the average
log-likelihood of measurements over a set of simulations. In partickar, we perform 50 5-minute
simulations of scintillation measurements. From each set of simulatedneasurements we subtract
o the truth reference of slip occurrences to obtain measurementsvithout cycle slips. We consider
a grid of parameter values for each of 2, ,2 and | and evaluate the log of Equation 4.19 for a

model Qy:

2100p(Yj zwie)= 109jQyji (Y B Zwe)' Qy (Y B Zge)+ C (B.1)

Here, C is constant with respect to the hyperparameter values. Computing he log-determinant
of Qy is non-trivial, and we apply the approximation algorithm from [100]. We choos the values
that minimize the average log-likelihood over all 50 simulations. Figue B.1 shows a slice of the
optimization landscape correspondingto and | for Window 1. The location corresponding to our
chosen hyperparameter values are indicated with a white dot. The mo$y uni-modal optimization

landscape indicates that the chosen parameters should be valid for penfming GP regression on

this type of data.
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Figure B.1: Grid of average log-likelihood for corrected simulated scitillation measurements cor-
responding to Window 1 parameters. The white dot indicates the loation for parameter values
that minimize this average log-likelihood.



Appendix C

Algebra for MAP and ILS Equivalence

In Chapter 4, we show the equivalence between MAP and ILS estimates assiing a uniform
(non-informative) prior for  z. To show this, we used the following proportionality with respect

to argument  z;:

N(y;B z;Qy)/N ( zi; 5Q ») (C.1)

For the sake of completeness, here we derive this proportionality in wre detail. First we recall the
de nitions for Q 5, and 5, which are provided in Equations 4.31 and 4.32 and which we provide
here for convenience:

Q .= B'Q,'B (C2)

»=Q »BTQ,ly (C3)

Now consider the exponent for the expressiomN (y;B  zj; Qy):

(y B z)'Q'(y B z) (C.4)
=y'Q,ly 2 z/BTQ,ly+ 2z/BTQ,'B z (C.5)
= z BTQ,'B 1BTleyT B'Q,'B z BTQ,B 'BTQ,ly (C.6)
= 7z Q,B7Q,Yy 'Q} z Q,BTQl (C.7)
=(z 'Q 3z ) (C8)

It follows that the exponents of the two densities are equal when evalated at appropriate inputs.

Therefore the terms in Equation C.1 are proportional.
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