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Originally designed for navigation, signals from Global Navigation Satellite Systems (GNSS)

are now being used for remote-sensing of Earth’s ionosphere, atmospheres, and surfaces. Since

their earliest application, the carrier phase of these signals have been afflicted by cycle slips, which

manifest as rapid and discrete changes in the phase measurement bias. They can occur due to the

effects of noise, multipath interference, receiver processing, or a combination of all these factors.

In both navigation and remote-sensing contexts, GNSS signals are subject to a variety of harsh

conditions, such as propagation through ionospheric and atmospheric structures, arrival from low

elevation angles, or reflection off Earth’s surfaces. Under such conditions, cycle slips become a major

error source for remote sensing and high accuracy navigation algorithms relying on continuous phase

measurements, and therefore must be mitigated.

This work addresses the characterization and mitigation of GNSS carrier cycle slips that

occur under these harsh conditions. In particular, we examine the origins of cycle slips due to the

effects of both noise and phase transitions, which are slip-inducing phase fluctuations related to

signal multipath interference. We discuss how phase transitions are related to canonical fading,

which is where a signal exhibits a fade in amplitude coinciding with a rapid half-cycle phase change.

Using phase screen simulations of ionosphere diffraction, we are able to characterize the cycle slips

rate-of-occurrence during ionosphere scintillation. We also show how many slips can occur due to

phase transitions where the signal fading is shallow, which has implications for algorithms that try

to make use the signal amplitude measurements when mitigating cycle slips. We then assess actual

phase transitions and cycle slips in real multi-frequency ionosphere scintillation data. We discuss

two different approaches to cycle slip mitigation that have been successful in the past, but which

fail to adequately address the slips in the ionosphere scintillation datasets.
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Our assessment of cycle slips in real scintillation data motivates our development of a general

probabilistic model for assessing cycle slip occurrences given an arbitrary set of GNSS carrier phase

measurements. In our model, we use Gaussian processes to represent signal phase components and

discuss tuning of the covariance parameters to deal with different levels of uncertainty or variation in

these components. We also discuss the roles of thermal noise and noise due to unmodeled errors such

as ionosphere diffraction. We consider the model performance for estimating a single cycle slip under

a variety of hypothetical conditions, and show that generally we require an extended window (≥16

seconds) of high-rate (≥20 Hz) measurements in order to reliably estimate cycle slip occurrences.

However, as we show in our assessment and characterization of real cycle slip occurrences, several

slips are prone to occur over such a window under harsh signal conditions. Therefore, cycle slip

amplitude estimates for a given window of harsh signal carrier phase measurements will be highly

interdependent. To address this, we develop a batch cycle slip detection and estimation method

that can reliably estimate cycle slips under harsh conditions. Our approach makes use of a variety

of novel techniques including sparse estimation of slip occurrences and an adaptation of the search-

and-shrink algorithm traditionally used to find the solutions of integer-least-squares problems. We

assess the algorithm performance on simulated and real datasets. We demonstrate its effectiveness

when applied during ionosphere scintillation, weak ocean reflections, or radio occultations through

the lower troposphere, and we show that it can work with triple-, dual-, and single-frequency signal

measurements.
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Chapter 1

An Overview of GNSS Cycle Slips

1.1 Introduction

Cycle slips are discrete and rapid changes in a signal carrier phase measurement bias. A

wide range of factors can contribute to the occurrence of cycle slips in measurements from Global

Navigation Satellite Systems (GNSS), including signal blockage, low signal-to-noise ratio, high

platform dynamics, and effects of propagation through a turbulent ionosphere or troposphere.

In short, harsh signal propagation conditions create a ripe environment for cycle slips to afflict

carrier phase measurements. When left uncorrected, cycle slips introduce persistent biases into the

measurement model that is used for a wide range of GNSS applications. As such, it is important

to understand how they arise, how they behave, and how well we can mitigate their impacts.

The problem of cycle slip mitigation can be stated as follows: given a set of carrier phase

measurements φ(t), determine whether a cycle slip has occurred and, if so, when did it occur and

what is its amplitude. Figure 1.1 illustrates two prototypical examples of GNSS phase measure-

ments containing cycle slips. In both panels, a cycle slip occurs at about halfway through on the

L5 signal phase (red line) in the presence of a larger overall phase trend (black dashed line) and

noise. The slip in the left panel occurs quickly relative to the variation in the trend, making it

easier to identify. On the other hand, the slip in the right panel does not happen as quickly and

is harder to identify. Its occurrence only becomes clear after comparison with measurements from

the L1 signal transmitted by the same satellite, since in this particular case we know both signals

should show similar phase trends.
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Figure 1.1: Shows two prototypical examples of cycle slip occurrences in GNSS phase measurements,
both taken from the 2013-10-05 Hong Kong dataset, which we introduce in Section 1.4. The left
panel shows a more easily identifiable slip in the presence of noise and a background trend. The right
panel shows simultaneous phase measurements from two signals, with a less-obvious slip occurring
on the L5 signal.

In general, our ability to visually identify these slips is dependent on the relationship between

the slip characteristics, noise amplitude, and our knowledge about the background trend of φ(t).

The presence of excessive noise or uncertain background trends can mask cycle slip occurrences and

decrease the probability of their identification. The potential for multiple consecutive cycle slips

exacerbates this issue. Some or all of these factors – i.e. large noise amplitude, uncertain background

trends, and consecutive slip occurrences – are present in GNSS measurements collected under the

conditions of multipath, weak signal power, strong atmospheric or ionospheric disturbances, and

highly dynamic receiver platforms. These harsh conditions make cycle slip mitigation difficult and

are the motivation for this dissertation. With such challenging data, it will sometimes be impossible

to correctly identify cycle slips with high confidence. Therefore, in order to enable the effective use

of GNSS phase measurements under such conditions, it is important to understand not only how

to deal with cycle slips, but also what are the limits for how well they can be mitigated.

This dissertation includes six chapters. In the remainder of this chapter, we briefly discuss

the relevant history and background of GNSS and techniques that have been applied to the cycle
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slip problem. We also show motivating examples of cycle slips in the context of different GNSS

remote sensing applications. In Chapter 2, we use simulations to assess the interplay between signal

diffraction and noise when it comes to cycle slip occurrence. We also characterize the cumulative

error that cycle slips can cause in the case of diffractive ionosphere scintillation. In Chapter 3,

we will take a closer look at cycle slip occurrence in real data containing deep signal fading and

ionosphere diffraction and assess the effectiveness of two different cycle slip mitigation techniques

under such conditions. The performance of these methods establish a need for an improved al-

gorithm. Subsequently, in Chapter 4, we lay out a framework for cycle slip estimation using an

arbitrary window multi-frequency phase measurements. We establish parameters for describing

phase components smoothness, establish approaches for determining phase noise, and use these to

quantify the probabilities of cycle slip identification under a variety of signal conditions. Then, in

Chapter 5, we use these models to develop a technique for detecting sparse slip occurrences in a

window of high-rate measurements and finding integer-least squares estimates in high dimensions.

We demonstrate application of this framework to both simulated and real data sets. In Chapter 6,

we provide a brief summary and discussion of the topics presented in this dissertation.

1.2 Background

1.2.1 Origin of Cycle Slips

A received baseband GNSS signal after demodulation can be modeled as:

s(t) = A(t) exp(iφ(t)) + η(t) (1.1)

where A is the signal amplitude, φ is its phase, and η(t) is assumed to be circular complex-valued

noise. During tracking, a reference signal with phase φref(t) is correlated against the baseband

signal to produce noisy observations of the received amplitude and residual phase:

∆s(t) = A(t) exp(i∆φ(t)) + η′(t) (1.2)
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where ∆φ(t) = φ(t) − φref(t). The raw phase measurement can then be reconstructed by adding

the unwrapped phase residual to the reference phase:

φ̂(t) = φref(t) + unwrap (∠∆s(t)) (1.3)

In this process, there are generally three things that can cause cycle slips to arise. 1) If the

difference between the reference phase and true phase change too much from epoch to epoch, i.e. the

receiver loses phase lock, then the residual measurement will not reflect their actual phase difference

and cycle slips will occur until lock is reestablished. 2) If noise dominates the signal, the residual

phase measurements jump around and the unwrap operation will erroneously introduce cycle slips.

As an example, Figure 1.2 illustrates how cycle slips can arise due to noise during the unwrapping

process. 3) If the signal experiences interference due to multipath, the residual baseband signal ∆s

can wrap around the complex origin. We call this phenomenon a phase transition, and it introduces

a cycle slip when the complex signal is unwrapped.

The first cause we mentioned, loss-of-lock, is one that we consider to be due to receiver mal-

function. In other words, adjusting the PLL bandwidth or otherwise ensuring an adequate reference

phase model can avoid such slips. There is also extensive literature concerning the second cause

of a noise-driven PLL (c.f. [67], [1]). Work in [37] considers ionosphere-scintillation-induced cycle

slips from this perspective, but does not specifically differentiate the impact of phase transitions.

In Chapter 2 and Chapter 3, we discuss phase transitions in more detail and examine how the

interplay between phase transitions and noise affects cycle slip occurrence.

1.2.2 Phase Measurement Model

So far we have introduced the origin of cycle slips, but their impact as a source of error is only

meaningful within the context of an actual phase measurement model. In this work, we consider

the following models for GNSS code phase and carrier phase observables:

ρk(t) = G(t) + βkI(t) + Bk + nk(t) (1.4)

Φk(t) =
λk

2π
φk(t) = G(t)− βkI(t) + Bk + λkzk(t) + ǫk(t) (1.5)
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Figure 1.2: Hypothetical example of cycle slips occurring during phase unwrapping.

where

• k denotes a quantity corresponding to the kth signal with carrier frequency fk and wave-

length λk

• G is the non-dispersive phase component, including any geometric range, clock, and tropo-

spheric effects, etc.

• I is the first-order ionosphere delay on the first signal frequency

• βk = f2
1 /f

2
k defines the proportionality of the ionosphere delay among the different signals

• Bk is a fractional bias term, including the effects of hardware delays, etc.

• zk is the term for the integer-valued bias in the phase measurement due to integer ambiguity

and cycle slips

• n and ǫ account for noise and unmodeled effects, including multipath and scintillation-

induced fluctuations
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The G term can be broken down into its main components as:

G = r + c (δttx − δtrx) +Dtropo (1.6)

where

• r is the transmitter-to-receiver antenna range

• δttx and δtrx are the transmitter and receiver clock errors

• Dtropo is the tropospheric range delay

Additionally, the I term can be related to the underlying physical parameter of ionosphere total

electron content (TEC):

I(t) ≈ κ

f2
TEC(t) (1.7)

where

• TEC measured in TEC units (1 TECu = 1×1016 electrons/meter2) is an integrated measure

of the ionosphere plasma content along the signal ray path

• κ ≈ 40.308× 1016m · s2/TECu is a constant

This ionospheric term only accounts for the first-order refractive ionosphere effect, though higher-

order effects are known to be comparatively small [38].

There are various effects that contribute to the noise terms ǫ and n. In particular, the iono-

sphere is known for causing phase and amplitude disturbances when signals diffract through plasma

irregularities. This effect is called ionosphere scintillation, and in addition to larger variations in

I it also causes increased measurement noise levels and carrier phase cycle slips. Figure 1.3 illus-

trates the process of ionosphere scintillation. A similar phenomenon occurs when occulting signals

diffract through irregularities in the lower troposphere, which is known as tropospheric scintillation.

More generally, any form of multipath or signal interference will lead to increased code and carrier

phase noise levels. Additionally, there are the effects due to thermal noise, which will be especially

important for signals with very low C/N0 or signals experiencing amplitude fading.
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Figure 1.3: Illustrates the process of ionosphere scintillation, in which irregular structures in the
ionosphere plasma density induce fluctuations received GNSS signals.

When it comes to cycle slip mitigation, it is important to understand how the variation in

these components compares to potential changes in the integer-bias due to cycle slips. Table 1.1

lists the size and variation of the different phase components one might see in measurements from a

stationary receiver on the ground. The largest and most highly varying components are the satellite-

receiver range r, receiver clock error δtrx, and refractive ionosphere effect I. Any effective approach

to cycle slip mitigation should make some effort to model and estimate these phase components.

The troposphere variation is smaller or less variable, and so it is usually not as critical to model.

Also note that the code phase noise nk is generally 1-2 orders of magnitude larger than the carrier

phase noise ǫk. This has important implications with regards to the ineffectiveness of code phase

observables when it comes to detecting or estimating cycle slips with small amplitudes. Note that

multipath or diffraction effects will lead to carrier phase errors significantly larger than the typical

values listed in the table. Overall, this model will be sufficient for discussing previous cycle slip
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range variation

r 20,000 - 26,000 km 0-4000 m/s
cδtrx ±1− 2 m 0-300 m/s
I 1-50 m 0-0.8 m/min

Dtropo 2.5-25
nk 0.05-0.5 m @ 1 Hz
ǫk ±4mm @ 1 Hz

Table 1.1: Approximate range and variation in the components of L-band measurements for a
typical stationary ground receiver.

mitigation techniques in this chapter as well as for introducing our own methods in Chapter 4.

1.2.3 Phase Combinations for Cycle Slip Mitigation

There is extensive literature on cycle slip mitigation for GNSS signals, documenting a pro-

gression of techniques since the launch of the Global Positioning System in the 1980s. The earliest

algorithms developed to work with single or dual-frequency GPS L1 and L2 signals all looked for

change outliers in specific combinations of measurements. For instance, [32] applied a Kalman filter

to the so-called geometry-free carrier phase combination and flagged outliers in its variation as cycle

slips to be fixed. The work in [7] extended this approach to use both code-minus-carrier and the

geometry-free carrier combinations. Both authors acknowledged how an active ionosphere and/or

receiver motion and clock dynamics associated with large measurement fluctuations can present

challenges when detecting outliers in phase time series. As such, linear combinations of measure-

ments that can isolate or remove these signal components have become a common thread in much of

the literature on cycle slip mitigation. Their use is also motivated by practical and computational

concerns in various other GNSS applications and processing steps, including standard positioning

and ambiguity resolution [60]. We use linear combinations of phase observations throughout this

work in order to demonstrate the effect of cycle slips in real data, to explain previous mitigation

approaches, and to assess improvement in mitigation outcomes.

For K signals at different carrier frequencies, an arbitrary linear combination of code and
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carrier phase measurements can be expressed as:

Y =
∑

k

cρkρk + cΦk
Φk (1.8)

where cρk and cΦk
are the linear combination coefficients for code phase and carrier phase re-

spectively. Also note that if the noise terms in Equation 1.4 and Equation 1.5 are described by

covariances Qρ and QΦ, then the variance of the resulting combination is:

σ2 = cTρQρcρ + cTΦQΦcΦ (1.9)

where cP and cL are the coefficient vectors for code and carrier phase measurements.

Most often, linear combinations are chosen such that they remove contributions from the

non-dispersive effects (modeled by G) and/or the refractive ionosphere effect (modeled by I) in

the resulting combination. These are referred to as geometry-free (GF) and ionosphere-free (IF)

combinations, respectively, and their coefficients satisfy:

∑

k

cρk + cΦk
= 0 GF (1.10)

∑

k

βkcρk − βkcΦk
= 0 IF (1.11)

1.2.3.1 Dual-Frequency Combinations

Among the various geometry-free and ionosphere-free combinations, the dual-frequency com-

binations using only code phase or only carrier phase have possibly the widest application. For the

first two decades of GNSS, satellites in the GPS and GLONASS constellations only transmitted sig-

nals in the L1 and L2 frequency bands, which are centered at 1575.42 MHz (L1) and 1227.60 MHz

(L2) for GPS specifically. The L1/L2 dual-frequency ionosphere-free combination is widely used

when correcting for the ionosphere effect during positioning [27]. Meanwhile, the dual-frequency

geometry-free combination is used for measuring ionosphere TEC [68]. We express the GF and IF
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combinations (applied to either code or carrier phase) as:

GFj,k = ρj − ρk or Φj − Φk (1.12)

IFj,k =
f2
j ρj − f2

kρk

f2
j − f2

k

or
f2
j Φj − f2

kΦk

f2
j − f2

k

(1.13)

The dual-frequency carrier phase GF combination has been widely applied for cycle slip

detection and estimation (c.f. [6], [8], [50]). This is because the non-dispersive phase components

in G are often the largest and most uncertain, and so their presence makes cycle slip estimation

more difficult. As an example, we consider the dual-frequency phase measurements in the top panel

of Figure 1.4. The data was recorded at 30-second intervals by a receiver located in Brazil that is

part of the International GNSS Service (IGS) network. We have subtracted off the largest phase

variations, which are due to the satellite-receiver range, so that we can more easily see the effect of

cycle slips and other phase variations that are present in the data. In this case, the cycle slips arise

due to the low satellite elevation (indicated by the dashed line in the third panel) which can often

cause excessive noise, multipath, and loss-of-lock when below ∼ 15− 20◦. These slips are notably

different from the earlier examples shown in Figure 1.1; they are larger and effectively instantaneous

due to the low sampling rate. Even still, they are somewhat difficult to discern in the top panel

due to residual phase variations from the receiver oscillator, troposphere, and refractive ionosphere

effects. Rather, they are more easily identified in the geometry-free phase combination shown in

the second panel, which still contains the ionosphere variation but is overall much smoother due

to being rid of the non-dispersive components. The noisier GF code measurement combination is

also displayed to indicate the approximate GF phase trend without cycle slips.

When the ionosphere variation is relatively smooth, as is the case for our example in Figure

1.4, the GF carrier phase combination is clearly a good option for detecting cycle slips. However,

this combination alone does not contain enough information to estimate the amplitude of cycle slips

on the two different carriers. If we want to estimate cycle slip amplitudes using phase combinations,

we need another independent measurement combination that is also effective for observing cycle
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Figure 1.4: Examples of detrended carrier phase, code and carrier GF combinations, and the HWM
combination in 30-second measurements for a receiver located in Brazil. Cycle slips occur due to
effects caused by the low satellite elevation, indicated in the dashed line in the third panel. This
data was obtained from the CDDIS (Crustal Dynamics Data Information System) website [55].
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slips. We consider the widelane and narrowlane combinations, which are given as:

WLj,k =
fjρj − fkρk
fj − fk

or
fjΦj − fkΦk

fj − fk
(1.14)

NLj,k =
fjρj + fkρk
fj + fk

or
fjΦj + fkΦk

fj + fk
(1.15)

Their names stem from how the difference or summation of phase (in cycles) can be interpreted

as a measurement corresponding to a signal with a wider or narrower (shorter) wavelength. For

example, the WL combination can be considered to have a wavelength of λWL = c/(fj − fk), which

is clearly larger than either λj or λk. The widelane and narrowlane combinations are not typically

applied on their own, but rather are combined to form the Hatch-Melbourne-Wübenna (HMW)

combination, which is given by:

HMWj,k =
fjΦj − fkΦk

fj − fk
− fjρj + fkρk

fj + fk
(1.16)

Note that this combination uses both carrier and code observations. Consider the result of substi-

tuting Equation 1.4 and Equation 1.5 into Equation 1.16, which after some simplification yields:

HMW1,2 = λWL(z1 − z2) +
λWL

λ1
ǫΦ1

+
λWL

λ2
ǫΦ2

+
λNL

λ1
ǫρ1 +

λNL

λ2
ǫρ2 (1.17)

From this expression, it is clear why this combination is used for cycle slip detection. In

addition to it being both ionosphere- and geometry-free, its use of the widelane carrier phase

combination amplifies the integer ambiguity terms while its use of the narrowlane code phase com-

bination suppresses the large code phase noise (since λWL > λNL). The third panel in Figure 1.4

shows the HMW combination, and the slips that are obvious in the GF combination are also appar-

ent in the HMW combination. Moreover, the ionosphere variation is eliminated in this combination,

although there is larger noise presence than in the GF carrier phase combination.

1.2.3.2 Triple-Frequency Combinations

Since the launch of the first GPS Block-IIF and QZSS satellites in 2010, more and more

GNSS satellites broadcasting at three or more frequencies have come online. Even before their
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launch, the various linear combinations involving triple-frequency signals were investigated [18]. In

particular, the GPS L5 signal, centered at 1,176.45 MHz, allows for computing a combination that

is both ionosphere-free and geometry-free and that uses only carrier phase measurements. The so-

called geometry-ionosphere-free (GIF) combination has been used in a variety of applications, from

identification of subtle variations in the satellite hardware biases [53] to fixing of integer ambiguities

[84] and cycle slips [20]. We choose to express the carrier-phase-only GIF combination as:

GIFi,j,k = (βj − βk)Φi + (βk − βi)Φj + (βi − βj)Φk (1.18)

for β as defined just after Equation 1.5. Derivation of these and other combination coefficients is

provided in Appendix A. Examples of the cycle slips in the triple-frequency GIF phase combination

are included in Section 1.4 and in Chapters 3 and 4.

1.2.4 Cycle Slip Mitigation Using Phase Combinations

So far, we have seen how certain measurement combinations can be useful for discerning the

effect of cycle slips. One of the most widely cited approaches to cycle slip correction, the TurboEdit

algorithm from [8], makes use of the HMW and GF carrier combinations to mitigate cycle slips

in dual-frequency measurements. To deal with the effects of code measurement noise, it computes

the running mean and variance of the HWM combination over phase-connected segments. If a

subsequent sample of the HWM combination lies outside of a specified threshold, say ±4 standard

deviations from the mean, then a slip is detected. The top panel of Figure 1.5 illustrates this

process for one of the slips that occurs in the data segment from Figure 1.4. The running average

of HWM is shown in a solid line with ±4σ bounds indicated by the dashed gray lines. Once a slip is

detected, the mean and variance estimates are reset and the slip amplitudes can be estimated using

the changes in the HWM and GF combinations caused by the slip. For the HWM combination,

we compute ∆HWM as the difference between first sample after a slip and the last mean estimate

before the slip. For the GF carrier phase combination, in order to account for the ionosphere trend,

we use a polynomial extrapolation to predict the next GF sample after the slip. We take ∆GF to
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Figure 1.5: Up-close example of the carrier GF and HWM combinations from Figure 1.4. In the
top panel, the running estimates for the HWM mean and ±4σ bounds are shown along with the
raw HWM samples. Both panels indicate the magnitude of the jump in the combinations due to a
cycle slip occurrence around 72 minutes into the window.

be the difference between the actual and predicted GF samples. This process is also illustrated in

second panel of Figure 1.5. With ∆HWM and ∆GF we can estimate the slip amplitudes by solving

the system:







∆HWM

∆GF
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λWL −λWL

λ1 −λ2













∆z1

∆z2






(1.19)

where ∆zk are the cycle slip amplitudes on each signal.

After solving this system, the values for ∆zk need to be fixed to integers. Cycle slip mitigation

algorithms tend to do one of two things: 1) they round them to the nearest integer, or 2) they search

for the best integer solution taking into account correlation between the estimates of ∆z1 and ∆z2.

For this second approach, many algorithms implement the least-squares ambiguity decorrelation

and adjustment (LAMBDA), which is an established method for fixing integer-valued parameters

that is widely used in GNSS ambiguity resolution [77]. We discuss this algorithm in more detail

when we introduce our approach to cycle slip estimation in Chapter 4.

Overall, the essential steps of the TurboEdit algorithm can be described as detection, re-
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gression, and fixing. To elaborate, we first detect slips as outlier in the changes of some. Then,

we use the deviation in these combinations from their nominal or predicted values in order to

regress on the cycle slip amplitude parameters ∆z. Finally, ∆z are fixed to integer values. These

are the prototypical steps for most cycle slip algorithms, and many of the subsequent mitigation

approaches can be seen as extensions of the Turboedit algorithm. For example, [52] introduced

weighting factors for the HWM coefficients based on satellite elevation, and the authors from [103]

and [102] extended the HMW to analogous triple-frequency combinations. Other algorithms try

to make use of other measurements combinations. [94] included use of the code-carrier widelane

(WL) combination to help address difficult-to-detect slips in dual-frequency measurements. [20]

suggested a series of combinations to address slips in triple-frequency signals with an emphasis on

the GPS and Galileo systems, and later [35] presented a similar approach designed for the Beidou

system. Additionally, the work in [26] offers some improvement to these methods by introducing

dynamic detection thresholds based on the posterior distribution of the various phase combinations.

However, when it comes to small cycle slips (on the order of 1-2 cycles), it has been repeatedly

shown that code phase noise in linear combinations overwhelms the ability of any combination

using code phase observables [20]. Therefore, many authors focused their efforts on tracking the

ionosphere variation in order to make optimal use of the precise information in the GF phase com-

bination [50], [14], [101]. Alternatively, IF combinations can be used when triple-frequency signals

are available and/or the non-dispersive signal component can be estimated [20], [54]. Either way,

the fact remains that correct identification of small amplitude slips (1-2 cycles) relies heavily on

the use of multi-frequency carrier phase measurements and constraints on uncertainty of dispersive

and non-dispersive signal components.

1.3 State-Space Approaches to Cycle Slip Mitigation

While the use of specific phase combinations provides an intuitive and computationally con-

venient approach to identifying cycle slips, performance of such methods cannot outperform those

that use a full set of unaltered phase measurements. This fact was pointed out in [3], where the



16

authors considered a state-space approach for cycle slip estimation. By “state-space” approach, we

simply mean using models of the form:

y = Ax+B∆z+ ǫ (1.20)

where

• y is a full set of raw measurements

• x is some set of float-valued parameters

• ∆z is some set of integer-valued cycle slip amplitudes

• A and B represent the system relating these parameters to our measurements

• ǫ is noise

The key aspect of these approaches is that they use uncombined measurements in y, in contrast

to the approaches we discussed in the last section that lose information when combining mea-

surements. However, this does not mean that the use of measurement combinations is necessarily

inferior. Methods using carefully chosen combinations can be viewed as efficient approximations

of state-space approaches. More specifically, their combination coefficients arise as approximations

to the eigenvectors of the matrix AQxA
T +Qǫ, where Qǫ and Qx are covariances quantifying the

uncertainty in the noise and non-integer parameter model terms. This matrix is a key part of our

estimation approach that we develop in Chapter 4.

In models of this form, the terms G and I would be included in x. Clearly, their behavior and

how they are modeled has a direct impact on the estimation of ∆z, and vice versa. [3] quantified how

uncertainty in these dispersive and non-dispersive signal components leads to incorrect estimation

of slip amplitudes in dual-frequency signals. Subsequent work in [99] assessed how a third signal

frequency would benefit estimation performance. The work in [90] demonstrates the performance

of models using dual- and triple-frequency measurements from multiple satellites simultaneously.

One of the main benefits of state-space approaches is that they offer greater flexibility in how we
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model the different phase components and their uncertainty. For example, with the approach we

introduce in Chapter 4 we assume stationary Gaussian process models for the non-dispersive and

refractive ionosphere phase components.

1.3.1 Modern Approaches and Challenges in Cycle Slip Mitigation

Most cycle slip approaches try to detect slip occurrences using just two measurement epochs,

or alternatively, a single epoch of time-differenced measurements. These types of algorithms have

been successful under normal signal conditions for 1 Hz or slower measurements. For instance, the

authors in [20] found zero faulty cycle slip estimates when applying their algorithm to 1 Hz GPS

data, even with phase noise standard deviations reaching up to 1/2 cycle. However, when it comes

to more challenging signal conditions, uncertainty in the variation of signal phase components

can cause most cycle slip algorithms to fail. The authors of [2] first discussed the particularly

difficult problem of dealing with cycle slips during ionosphere plasma bubble events when phase

measurements contain multiple cycle slips and unpredictable variations due to changes in ionosphere

total electron content (TEC). Along with the authors in [101] and [65], they emphasize the utility

of IF phase combinations and careful estimation of non-dispersive phase components when it comes

to detecting cycle slips in these scenarios. However, as noted in [3], even with careful estimation

of non-dispersive components it may still be impossible to effectively estimate slip occurrences in

time-differenced measurements when the ionosphere variability is severe.

Several authors noted the greatly improved estimation capability when using multiple mea-

surement epochs. For instance, the authors in [21] provided a probabilistic approach to detecting

slip occurrences in a window of measurements by deriving the posterior for slip occurrence in a poly-

nomial regression. The authors in [14] considered a forward-backward moving window algorithm

specifically targeting dual-frequency signals during high ionosphere activity, and [102] presented

a similar algorithm for triple-frequency signals. Also, while a majority of cycle slip mitigation

research has centred around ionosphere effects, it is not the only source of challenging signals con-

taining cycle slips. One example comes from the work in [85], which presents an algorithm to detect
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and remove cycle slips in weak signals reflected off the ocean surface. Other challenging sources of

cycle slip occurrence include troposphere scintillation [96], urban multipath [28], and high-dynamic

receiver platforms or oscillators. For this latter case, [51] proposed detecting slips as outliers in

the singular spectrum over a window of measurements, and [49] proposed multi-epoch detection in

the context of sequential filtering. Overall, the common thread in the most effective algorithms in

each of these domains is that they use as much information as possible: i.e. extended windows of

high-rate raw phase measurements.

1.4 GNSS Cycle Slip Datasets

Here we introduce datasets of signals under harsh conditions that contain multiple cycle

slips. We will use these datasets in chapters 3, 4, and 5 to assess and validate different mitigation

algorithms. For the Ascension Island and Hong Kong datasets introduced below, we use phase

measurements where a majority of non-dispersive phase components have been removed using a

detrending technique that we describe in Section 3.2.1 of Chapter 3.

1.4.0.1 Ascension Island

The first dataset consists of commercial receiver output (Septentrio PolaRxS) along with raw

intermediate-frequency (IF) data for triple-frequency GPS signals from a receiver near Ascension

Island (7.95◦, 14.36◦ W) on 2013-03-10. Raw data from GPS L1, L2, and L5 bands was collected

and recorded by the SeNSe Lab, and was tracked using the robust tracking algorithm from [92]. As

shown in the first panel of Figure 1.6, the signal from GPS PRN 24 contained significant fluctuations

in amplitude beginning at around 20:00 UT (also local) and lasting until around 21:30 UT. During

this time, the satellite rose from around 13◦ to 27◦ elevation. The middle and bottom panels of

Figure 1.6 show the detrended carrier phase and GIF carrier phase combination for the L1, L2, and

L5 signals. Many discrete jumps occur, indicating the frequent occurrence of diffraction-induced

cycle slips. These jumps coincide with fading of the signal amplitude. We take a closer look at the

cycle slips that occur in this dataset in Section 3.3.1 of Chapter 3.
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Figure 1.6: Triple-frequency C/N0, phase, and phase combinations corresponding to a signal from
GPS PRN 24 that was measured during a scintillation event on 2013-03-10 by a receiver on Ascen-
sion Island.
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1.4.0.2 Hong Kong

The second dataset comes from a commercial GNSS receiver (Septentrio PolaRxS) located

just outside of Hong Kong (22◦ N, 115◦ E). GNSS measurements exhibited effects due to a strong

ionosphere scintillation event on 2013-10-05. We again consider signals from GPS PRN 24, which

showed particularly strong deep fades lasting from around 12:00 to 13:00 UT or around 20:00 to

21:00 LT. During this time, the satellite rose from around 31◦ to 61◦ elevation. The top panel of

Figure 1.7 shows the signal C/N0 obtained for L1, L2, and L5 signals, demonstrating the presence

of amplitude fluctuations associated with diffractive scintillation. The second panel shows the

detrended phase measurements and the bottom two panels show the IF and GIF carrier phase

combinations, respectively. Again, jumps in the phase combinations indicate the occurrence of

cycle slips.

1.4.1 LEO Ocean Reflection

In addition to cycle slips caused by ionosphere scintillation, we also consider slips in the

L1/L2 GPS signals that were reflected off the ocean and collected by a receiver on board a low

Earth orbiting satellite from Spire Inc.. Figure 1.8 shows the signal amplitudes in the top panel, the

detrended phases in the middle panel, and the GF combination of L1 and L2 carrier phases in the

bottom panel. The occurrence of discrete jumps in the GF signal indicate cycle slips. The chaotic

phase behavior at the beginning of the plot likely corresponds to non-coherent signal measurements,

similar to the previous example. It is important to acknowledge that as signal conditions degrade

we will reach a point where cycle slip mitigation is no longer feasible or even meaningful.

1.4.2 Mountaintop RO

Our final example of cycle slips comes from mountaintop radio occultation (RO) measure-

ments. A high-gain dish antenna located on top of Mount Haleakala, Hawaii (3 km altitude)

collected the signals from very-low-elevation and over-the-horizon GNSS satellites. GPS signals

were acquired for a rising event with PRN 03 on 8 May 2017. Figure 1.9 shows the L1 signal C/N0
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Figure 1.7: Triple-frequency C/N0, phase, and phase combinations corresponding to a signal from
GPS PRN 24 that was measured during a scintillation event on 2013-10-05 by a receiver near Hong
Kong.
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Figure 1.8: Measurements from L1 and L2 GPS signals that were reflected off the ocean surface
and received by the low-Earth orbiting Spire radio occultation satellite. Top panel shows C/N0

fluctuations, middle panel shows the detrended phase, and bottom panel shows the presence of
cycle slips using the GF combination of L1 and L2 carrier phases.
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and carrier phase measurements. In this case, the navigation data bits were not removed and so

the carrier phase measurements are afflicted by half-cycle (instead of full-cycle) slips. In addition

to already very low C/N0 the signal experiences several deep fades during which the signal phase

rapidly accrues a bias due to cycle slips.

1.4.3 Datasets: Summary

Looking at each of these examples, a common aspect is the occurrence of many cycle slip over

a periods less than a minute. One of the reasons we are able to see these slips in this data is our

use of high-rate (100 Hz) carrier phase measurements. Without such measurements, many of the

slips in these examples may not be identifiable. Another pattern is the coincidence of cycle slips

and signal fading. We explore this relationship more in chapters 2 and 3, and we make explicit use

of signal amplitude when performing mitigation based on the backpropagation filter in Chapter 5.

1.5 Summary

In this chapter, we introduced the cycle slip problem along with a model for GNSS measure-

ments. We discussed linear combinations of these measurements and how they have been used for

cycle slip mitigation, along with a broader discussion about approaches to cycle slip mitigation. We

then introduced some GNSS datasets with harsh signal conditions containing phase fluctuations,

noise, and many cycle slips. In the next chapter, we will characterize the occurrence of cycle slips

in simulations. In the subsequent chapter, we will take a closer look at the occurrence of cycle slips

in the real datasets we just considered in Section 1.4. All of this will be in preparation for our new

approach to cycle slip mitigation that we present in Chapter 4 and Chapter 5.
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Figure 1.9: Example of L1 signal C/N0 and carrier phase measurements collected using a high-gain
dish antenna on top of Mount Haleakala, Hawaii.



Chapter 2

Cycle Slip Simulation and Characterization

2.1 Introduction

In Section 1.2.1 in Chapter 1, we reviewed the different processes that cause of cycle slips to

occur. Two of these causes are the unwrapping of noisy phase measurements and the occurrence

of phase transitions, both of which occur for signals under harsh conditions. In particular, when a

radio signal experiences deep amplitude fading, its phase will likely undergo a simultaneous rapid

half-cycle change. In the context of GNSS signals, these events are known as canonical fades and

commonly occur during strong scintillation or multipath reflection [58]. Occasionally, the rapid

half-cycle phase changes are part of actual full-cycle phase transitions, or cycle slips, which occur

over the duration of the fade. It is important to stress that these cycle slips are a product of

the propagation environment and are not necessarily due to receiver processing errors. However,

regardless of their origins, all cycle slips cause a persistent change in carrier ambiguity. During

conditions of strong scintillation or multipath associated with frequent and intense fading, these

diffraction- or multipath-induced cycle slips can be the largest and most challenging source of

error that corrupts GNSS phase measurements. In order to advance navigation and remote-sensing

applications under such harsh conditions, it is important to analyze and characterize this error

source.

0 This chapter is adapted from the paper GNSS Carrier Phase Cycle Slips Due to Diffractive Ionosphere Scin-

tillation: Simulation and Characterization published in IEEE Transactions on Aerospace and Electronic Systems
[10].
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2.1.1 Phase Transitions

As we introduced in Chapter 1, the received and demodulated baseband GNSS signal can be

modeled as a complex exponential:

s(t) = A(t) exp(iφ(t)) + η(t) (2.1)

When a signal refracts through atmospheric structures or reflects off of rough surfaces, the received

signal essentially becomes a superposition of multiple copies of the “direct” signal. The result

is called interference or multipath, and it leads to fluctuations in the phase and amplitude of

the received signal. In the simplest case, we consider the scenario of interference between two

continuous-wave signals:

A exp (iφ) + Ã exp
(

iφ̃
)

= A exp (iφ) [1 + α exp (i∆φ)] , (2.2)

where α = Ã/A is the amplitude ratio and ∆φ = φ̃− φ is the difference in phase between the two

signals. The resulting signal can be interpreted as a nominal signal A exp (iφ) modulated by the

complex number 1+α exp (i∆φ) 1 . Looking at Equation 2.2, we see that whenever ∆φ approaches

180◦, and α is large enough, the resulting signal experiences a deep fade. It is illustrative to consider

the signal behavior in time-series that are modeled by this equation. The top image in Figure 2.1

depicts two trajectories of the modulation term in the complex plane, with corresponding time-series

of the resulting amplitude and phase shown beneath. [17] provides a similar visual descriptions of

phase transition occurrence for the case of ionosphere scintillation. In the context of GNSS signals,

this behavior is called canonical fading.

Scenarios A and B both show the typical canonical fade behavior that occurs when the phasor

passes close to zero. A crucial difference is that the signal phasor in scenario B wraps around the

origin thereby causing a cycle slip relative to the nominal signal phase. A third example is provided

by scenario C in Figure 2.2, where the simulated parameters are the same as in scenario A, but with

1 Note that, during diffractive scintillation, it is usually possible to define a direct signal phase that is consistent
with the signal phase measured in absence of diffraction. For instance, this would be the unperturbed field that
is considered in the Rytov approximation of the electromagnetic field propagating through a random structure (c.f.
[88]).
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Figure 2.1: The first panel depicts how the trajectories of the complex modulation term in Equation
2.2 for two hypothetical fade scenarios. The second panel shows the corresponding time series in
resulting amplitude and phase modulation of the signal.

added noise assuming a C/N0 of 40 dB-Hz. In this case, the noise causes a cycle slip to occur even

though there was no slip in the original noise-free phase trajectory. This simple example illustrates

two key points. First, canonical fading will only sometimes correspond to cycle slip occurrence,

and whether it does is not clear just from looking at the phase time series from one signal. The

phase in scenarios A and B actually look very similar when reflected vertically, but only scenario

B contains a cycle slip. Secondly, the effects of noise can induce cycle slips in the measured phase,

and its effects will compound with scintillation diffraction. Deeper fading and lower baseline C/N0

leads to a greater chance for cycle slips.
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Figure 2.2: Shows simulated phase and amplitude time series with the same parameters as example
A in Figure 2.1, but with added noise assuming a C/N0 of 40 dBHz.

Admittedly, real-world diffraction is quite a bit more complicated than the idealized interfer-

ence model we just considered. More generally, the motion of the phasor in Figure 2.1 corresponds

to a sort of random walk [31], [97]. For example, Figure 2.3 shows the complex phasor along with

amplitude and phase measurements corresponding to a more realistic scintillation signal, which we

simulate using the method outlined in Section 2.2.1. The figure shows two cases: noise-free and

noisy. Two canonical fades occur as the phasor passes close to the origin. For the noise-free case,

only the second fade corresponds to a phase transitions, while in the noisy version the first fade

corresponds to a cycle slip and the phase transition in the second fade no longer occurs. This more

realistic example further illustrates the intricate relationship between phase transitions and noise

in these types of signals and how their effects compound to either create or mask the occurrence

of cycle slips. This is one of the main topics we investigate in the remainder of this chapter. More-

over, as we discuss towards the end of this chapter and in Section 3.3 of Chapter 3, signal fading in

real data does not always exhibit sharp drops in intensity like we see in the simulation examples.

Sometimes deep fading is extended or followed by lingering regions of moderate or weak fading [47],

[42]. For these scenarios it can be especially unclear whether or not a cycle slip has occurred.
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Figure 2.3: Demonstrates two examples of canonical fades. The first two panels shows the
diffractive field phasor trajectories in the complex plane. The bottom two panels show the signal
amplitude and phase. Each canonical fade corresponds to a decrease of more than 10 dB in signal
amplitude along with a rapid half-cycle phase change. The blue and red colors distinguish the
noise-free and noisy versions of the signal. The flat blue line in the second panel represents the true
phase offset due to a phase transition that occurs in the true phase during the second fade only.
Meanwhile, the noisy signal shows how the impact of noise can mask or induce cycle slips that are
or are not present in the noise-free signal. The alternate shaded portions of signal amplitude in the
second panel demonstrates the definition of a single fade that is used for analysis in this paper.

2.1.2 Previous Work

In this section, we review previous work that has been done to characterize cycle slip oc-

currence. Traditionally, cycle slips are considered to be the result of a non-linear interaction that

occurs in a PLL driven by noisy phase measurements, and there are established results about the
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mean time to slip occurrence in phase-lock loops (PLLs) [76], [1]. The authors in [36] extend this

analysis to cycle slips that occur for GNSS PLLs during strong ionosphere scintillation. They as-

sumed a squaring PLL that is insensitive to half-cycle phase changes (e.g. the Costas PLL) and

loosely identified cycle slips as belonging to one of two classes: half-cycle slips due to canonical

fading, and half-cycle or greater sized slips due to extended deep fading plus noise. For the latter

case, the mean time between slips was assumed to occur at the rate consistent with original analyses

for a noise-driven PLL. The authors in [24] applied this analysis to real data from a scintillation

campaign and provided real-world context for cycle slip measurement results. They concluded

that signal diffraction and associated cycle slips are a dominant error source during strong scin-

tillation. One issue with these analyses is that C/N0 estimation is poor at low SNR, so modeling

cycle slip occurrence based on fading depth does not accurately capture the true probability. More

importantly, these analyses did not account for the contribution of phase transitions to cycle slip

occurrence during strong scintillation.

The concept of phase transitions in the context of GNSS scintillation was originally identified

in phase screen models used to simulate strong scattering from ionosphere irregularities. These

models typically use the parabolic approximation to the wave equation to propagate the effects

of one or more phase screens representing the cumulative impact of ionosphere irregularities, and

have been successfully used to describe multi-frequency observations of real diffractive scintillation

[57], [43]. The hybrid technique introduced in [30] is one such model that was later used in [31]

and [97] to assess GNSS phase errors. Similarly, [17] used the model introduced in [16] to analyze

the impact of diffractive fluctuations on GNSS phase. These authors identify how phase transitions

occur when the random walk of the diffractive field phasor (representing the complex multipath

modulation imparted on the GNSS signal) wraps around the complex origin. As we saw in the last

section, due to the nature of these random walks, phase transitions almost always coincide with

deep signal fading and rapid half-cycle phase changes (i.e. canonical fades).

Authors from both [31] and [17] investigated errors in the dual-frequency ionosphere-free

combination, specifically acknowledging the impact of phase transitions at stronger scintillation
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strengths. In [17] they noted that their cumulative impact on phase error could be up to several

meters. In [97] they used the random phase screen model to study the occurrence of canonical

fading and its relationship to scintillation intensity as characterized by the S4 index. They used

the term “phase transition” to refer to phase variation during canonical fades, regardless of whether

and actual full-cycle phase transition occurred. Note, we choose to use the term only to describe the

full-cycle transition event (e.g. the second fade shown in blue for Figure 2.3) that introduces biases

into the true unwrapped phase. The authors also investigate cycle slip occurrence, but consider

any canonical fade (with field amplitude below -10 dB and a rapid half-cycle phase change) as a

proxy for the occurrence of cycle slips. This may be applicable for PLLs that are insensitive to

half-cycle phase changes, but is not true for general four-quadrant phase tracking. Overall, both

sets of authors agree that the effect of phase transitions is an important error to contend with in

strong diffractive scintillation.

The terminology surrounding phase transitions thus far has been inconsistent and deserves

clarification. While in [31] and [97] they essentially equate phase transitions to cycle slips, the

authors in [17] argue that because phase transitions occur “gradually over many samples. . . [they

are] distinct from cycle slips, which are abrupt phase changes of a cycle (or more). . . .” In our

opinion, both authors are correct. The conventional usage of the term cycle slip would seem

to indicate that phase transitions are an error in the receiver measurement and that they occur

instantaneously between two measurement epochs, neither of which is true. On the other hand,

phase transitions introduce an integer-cycle bias into the phase measurement, just like cycle slips.

To geodetic users who use 1 Hz data or slower there may be no way to differentiate between phase

transitions and cycle slips caused by other factors, such as receiver artifacts. Moreover, even at

high sampling rates there is not necessarily a clear distinction between phase transitions and the

noise-induced cycle slips that occur during deep fading, as studied in [36]. Introducing noise can

cause new cycle slips to occur or mask the occurrence of cycle slips due to phase transitions. As an

example, Figure 2.3 provides a noisy version (in red) of the true phase (in blue) during canonical

fading. In this case, the noisy phase ends up slipping during the first fade, for which there was
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no slip in the true phase, and not slipping during the second fade, for which there was a slip in

the true phase. The purpose here is to recognize how the impacts of signal fading and noise can

compound on one another to produce many cycle slips. In the end, due to their common origins,

we suggest the terminology “diffraction-induced cycle slips” to encompass both phase transitions

and noise-induced cycle slips that occur during strong scintillation.

In the remainder of this chapter, we aim to clarify the contribution of phase transitions

towards cycle slip occurrence during strong scintillation. To do this, we look at simulations of

ionosphere scintillation at three L-band frequencies in order to analyze the impact of diffraction-

induced cycle slips on GNSS phase measurements. We use the ionosphere phase screen model from

[62], which has been validated using real multi-frequency GNSS data in [43] and [91]. A caveat to

this model is that it only really applies to equatorial scintillation scenarios, and while diffractive

scintillation is mostly associated with low-latitudes, it can also occur on radio occultation links [56]

or occasionally even at high latitudes [71]. Despite this caveat, the methodology applied in this work

can be extended to these other domains where signal diffraction occurs, given adequate models.

Using these simulations, we look at how often diffraction-induced cycle slips occur for given fading

depth and duration, as well as look at the statistics of their cumulative impact on measured phase.

The main contributions of this work are the following. First, we quantify the cycle slip occurrence

rate dependence on the signal baseline C/N0 and the scintillation intensity. Second, we confirm

that the Poisson process is an appropriate model to describe the cycle slip occurrence and identify

the Skellam distribution (Equation 2.12) as an accurate representation of the cumulative impact

cycle clips on phase measurement errors. Finally, correlations between the cumulative impact of

cycle slips for the three carrier frequencies are established for varying levels of scintillation levels

and baseline C/N0. As a whole, the results serve to partially distinguish cycle slips associated

with phase transitions and those occurring due to deep fading plus noise. This has implications for

previous characterizations of cycle slip occurrence that only consider fading parameters. Moreover,

these results can provide a useful baseline for assessing or predicting cumulative phase errors during

strong diffractive scintillation.
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Figure 2.4: The density of the random walk of the diffraction field phasor in the complex plane.
The point at 1 (marked by a white dot) corresponds to zero diffractive perturbations, while the
origin corresponds to complete destructive interference. The consecutive panels illustrate how, as
scintillation strength increases, it may be more probable for the random walk to wrap around the
origin and cause cycle slips.

The chapter is structured as follows. In the first section, we introduce the scintillation simula-

tion model and present a model for the impact of noise on cycle slip occurrence. In the subsequent

section, we introduce definitions of fading depth and duration and describe a technique for ex-

tracting the occurrences of and cumulative effect of cycle slips from the simulated phase. Then we

present and interpret results for the dependence of cycle slips on scintillation and fading parameters,

as well as on the cumulative error due to cycle slips and its correlation across frequencies. Finally,

we summarize the essential results and discuss the challenges and potential solutions associated

with diffraction-induced cycle slips.

2.2 Background

2.2.1 Phase Screen Scintillation Model

For this chapter, we consider the following model for the received signal phase, which ignores

any initial ambiguities and biases from Equation 1.5 in Chapter 1:

φk(t) = 2π
G(t)
λk

− κ

f2
k

TEC(t)− φs,k(t) (2.3)
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We introduce the term φs,k to specifically represent the diffractive scintillation phase, including

phase transitions. Note that we have substituted the term βkI from our original phase model

in Equation 1.5 with the definition of refractive ionosphere phase from Equation 1.7. Simulating

scintillation phase amounts to creating realistic time series for the last two terms in this model.

In order to simulate φ during strong scintillation, we use the equivalent phase screen model from

[62]. Given a set of phase screen parameters and a set of signal frequencies, the model generates

a consistent set of phase screens φ̄k(t) and realizations Ψk of the complex field at the receiving

antenna. In our simulations, we consider the true (noise-free) phase and amplitude of the signal to

be:

φk(t) = unwrap (∠Ψk(t)) (2.4)

Ak(t) =
∣

∣Ψk(t)
∣

∣ (2.5)

There is one small caveat to Equation 2.4, since extremely deep fades can lead to incorrect phase

unwrapping in the discrete signal. However, this problem can be solved by applying Fourier in-

terpolation as described in [61]. Then, the time series φk(t) effectively simulates Equation 2.3,

assuming the term G(t) is zero.

Figure 2.5 shows examples of noise-free simulated scintillation intensity and phase time series

for a case of moderately strong equatorial scintillation for all three signal frequencies. Note that

the phase is converted to TEC units via:

TECk(t) = −
φk(t)

λkre
(2.6)

The similarity between all three signals’ phases is consistent with the majority of variation being

due to the phase screens, which are approximately identical among the three frequencies. The

persistent discrepancies between the phases are due to the diffraction-induced phase transitions.

We can deconstruct the simulator output Ψ(t) into:

Ψ = Ψs exp(iφ̄(t)) (2.7)
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where

Ψs = |Ψ| exp(iφs(t)) = |Ψ| exp(i(φ(t)− φ̄(t))) (2.8)

is interpreted as the diffractive perturbation to a normalized, unperturbed field Ψ0 = exp(iφ̄(t)). In

other words, we treat the phase screen as the refractive phase (i.e. the TEC term from Equation 2.3).

Figure 2.4 shows histograms of Ψs for various scintillation conditions, revealing how as scintillation

strength increases it becomes more probable for the diffraction perturbation to wrap around the

origin and cause a phase transition. The colored lines in Figure 2.6 show the diffractive phases

φs,k(t) corresponding to the simulated example in Figure 2.5. It reveals how the fluctuations and

phase transitions due to strong scattering are sometimes correlated and sometimes uncorrelated

among signals at different frequencies.

The model specifying the equivalent phase screens requires five parameters: U , ρ/veff, µ0, p1,

and p2. We briefly describe them here, and for an in-depth discussion readers are referred to [62].

The universal strength parameter U determines the magnitude of plasma irregularities relative to

the background density, and generally describes the strength of amplitude and phase fluctuations

in the resulting scintillation. The parameter ρ/veff comprises the ratio of the first Fresnel radius

ρ to the effective scan velocity veff through the ionosphere structure, and is correlated to the time

between diffractive fluctuations. The remaining parameters µ0, p1, and p2 respectively define the

break scale and slopes of a two-component inverse power law spectrum derived from the statistical

structure of the ionosphere irregularities. This set of parameters is defined for a given signal

frequency and then mapped to physically consistent values for other frequencies. The stochastic

phase screen structure is initialized using the same random seed so that signal fluctuations across

different frequencies are consistent with propagation through the same random structure.

Our goal is to provide an intuitive analysis of phase transition or cycle slip occurrence under

a variety of realistic equatorial scintillation scenarios, which is difficult to do using five model-

specific variables. The authors in [91] suggest a reduction of the model to just two parameters – the

scintillation index S4 and decorrelation time τ – that are commonly used in characterizing equatorial



36

scintillation (c.f. [37], [24]). As such, we use S4 and τ to characterize the different scintillation

scenarios that we consider in this study, where S4 is defined in the usual way as the normalized

deviation of signal intensity and decorrelation time is defined as when the intensity autocorrelation

drops to 1/e of its peak value. Work from [93] shows that for ground stations at low latitudes, µ0, p1,

and p2 remain close to nominal values of 0.8, 2.7, and 3.6, respectively. Meanwhile, the parameters

U and ρ/veff are able to capture almost all of the observed variation in scintillation characteristics.

They empirically derive the mappings between parameters by simulating scintillation for various

values of U and ρ/veff and then computing the corresponding S4 and τ from the resulting simulated

intensity. The results show that the value of S4 can be directly related to U , while τ and ρ/veff

have a linear dependence that varies with U . We did this in order to determine the phase screen

parameters U and ρ/veff provided in Table 2.1 that correspond to the approximate range of S4 and

τ values in Table 2.2. The decrease in slope relating τ to ρ/veff as U increases is in agreement

with the analysis by [16] and [24] that showed how higher S4 generally corresponds to lower τ for

realistic equatorial scintillation.

Table 2.1: Phase Screen Parameters

S1T1 S1T2 S1T3 S2T1 S2T2 S2T3 S3T1 S3T2 S3T3 S4T1 S4T2 S4T3

U
L1 0.30 0.30 0.30 0.60 0.60 0.60 1.20 1.20 1.20 2.00 2.00 2.00
L2 0.68 0.68 0.68 1.37 1.37 1.37 2.73 2.73 2.73 4.56 4.56 4.56
L5 0.79 0.79 0.79 1.57 1.57 1.57 3.15 3.15 3.15 5.24 5.24 5.24

ρ
veff

L1 1.50 0.70 0.30 1.50 0.70 0.30 1.50 0.70 0.30 1.50 0.70 0.30
L2 1.70 0.79 0.34 1.70 0.79 0.34 1.70 0.79 0.34 1.70 0.79 0.34
L5 1.74 0.81 0.35 1.74 0.81 0.35 1.74 0.81 0.35 1.74 0.81 0.35

In our analysis, scintillation strength and scintillation fading rate are two of the primary

factors associated with cycle slip occurrence due to scintillation, with higher occurrence rates cor-

responding to stronger scintillation (high S4) and faster fading (low τ). It is known that phase

transitions begin to occur in scintillation signals when S4 passes around 0.6 [31], which also tends

to be the point at which receivers start experiencing cycle slips and loss-of-lock [23]. During solar

maximum, receivers at low latitudes, especially near the equatorial ionization anomaly, experience
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Figure 2.5: An example simulation of scintillation amplitude (first panel) and phase (second panel)
corresponding to the L1, L2, and L5 frequencies for a strong scintillation scenario S3T2. Note that
phase has been scaled to TEC units.

S4 values reaching 1 or higher, while τ ranges between ≈ 0.2−1.3 depending on scintillation strength

[24], [23]. Based on these analyses, we chose pairs of S4 and τ parameters for each frequency (L1,

L2, L5) corresponding to a set of 12 scintillation scenarios that we consider in this study. Their

values are provided in Table 2.2. For convenience, we enumerate these scenarios using the template

“S#T#” to indicate the different strengths and decorrelation times. Increasing numbers corre-

spond to an increase in S4 and decrease in τ , which translates overall to an increase in cycle slips.

As an example, “S4T3” corresponds to the scenario with the highest S4 value and shortest τ value,

which should produce the most cycle slips.
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2.2.2 Simulating the Impact of Noise

Scintillation strength and fading rate both impact the occurrence rates of cycle slips in strong

GNSS scintillation. However, in real-world scenarios the impact of noise cannot be ignored. We

consider a baseline carrier-to-noise density ratio C/N0 to be the relevant parameter determining

noise impact on cycle slip occurrence. C/N0 is defined as the carrier-to-noise density ratio that

would be measured in the absence of any scintillation diffraction. In order to simulate the impact

of different C/N0, we generate noise according to:

ηk(t) ∼ N (0, σ2) σ =
B

C/N0

(2.9)

i.e. ηk(t) are assumed to be independent random variables drawn from the zero-mean circular

complex normal distribution with variance σ2. We assume the noise bandwidth B is equal to 1/T ,

where T = 0.01 seconds is the measurement integration time and sampling interval used in this

study. The noisy simulations of phase and amplitude are then given by:

φk(t) = unwrap (∠ (Ψk(t) + ǫk(t))) (2.10)

Ak(t) =
∣

∣Ψk(t) + ǫk(t)
∣

∣ (2.11)

Note that this model for introducing noise into the phase measurements accounts for thermal

and processing noise only, and specifically does not account for phase jitter due to the receiver

oscillator. This is generally not an important factor for ionosphere monitoring receivers, which are

usually designed to have low phase noise [82], but may be an important consideration for other

types of receivers and should therefore be studied further. The approach we take should still provide

a good diagnostic assessment on the relative contributions of noise to cycle slip occurrence. In our

analysis, we consider baseline C/N0 values from 36 to 50 dB-Hz, which covers the range of observed

values for low-latitude scintillation events studied in [23].
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2.3 Methodology

To reiterate, our aim is to highlight the impact on cycle slip occurrence due to scintillation

and fading characteristics (similar to previous work in [24]), as well as the importance of C/N0

and noise. Additionally, we look to analyze the cumulative error distribution due to cycle slips.

To do this requires simulation of a large amount of phase and amplitude time series for each of

the different scintillation scenarios. We also need to establish the definition for a signal fade and a

method to determine cycle slip occurrence in the simulated output. In this section, we outline our

approach to these tasks.

2.3.1 Simulation

For each scintillation scenario in Table 2.2, we generate over 1000 hours of scintillation.

A large volume of simulations is necessary since phase transitions or cycle slips can be a sparse

occurrence, especially at lower scintillation strengths. We then add noise and compute the measured

signal for baseline carrier-to-noise density ratios from 36 to 50 dB-Hz according to Equation 2.10.

We used these simulated amplitudes and phases to obtain fade statistics and cycle slip occurrences

as outlined in the next two subsections.

2.3.2 Signal Fade Definition

We define a fade segment as a contiguous interval between two local maxima in signal am-

plitude where the normalized amplitude is also less than 0 dB. Before finding its local maxima, it

is useful to remove smaller oscillations in the signal amplitude by applying a low-pass filter with

a cutoff around 4 Hz. This helps ensure fade segments are not too short. The alternating shaded

portions of the amplitude time series in the first panel of Figure 2.3 illustrate what we consider to

be fade segments. Using this definition, we define the fade duration as the segment duration and

the fade amplitude as the minimum amplitude over the segment.



40

Figure 2.6: Diffraction phase residual (obtained as the full phase observation minus the phase
screen component) for the scenario shown in Figure 2.5. Phase is plotted in cycles, and the occur-
rence of diffraction-induced phase transitions clearly leads to integer-valued biases. The results of
applying the TVD fit algorithm are shown with the dashed black line.

2.3.3 Identifying Cycle Slips

Here we introduce a technique that uses total variation denoising (TVD) to determine the

occurrence of phase transitions or cycle slips in simulated phase time series. While cycle slip

detection in real-world GNSS data is complicated by the presence of unknown phase components,

in simulations these other phase components are known and can be removed in order to isolate

the diffractive phase and cycle slips. Consider the example of diffractive phase that is illustrated

in Figure 2.6. In general, its variations are comprised of constant-mean fluctuations that are

highly correlated across frequencies and contain sparse integer jumps in signal mean due to phase

transitions or cycle slips. TVD is an optimization technique commonly used to estimate signals

with sparse derivative components in the presence of noise [66]. Such is the case for diffractive

phase, when we treat the cumulative bias due to cycle slips as the desired signal and the remaining

diffractive fluctuations as noise.

We apply a weighted TVD fit (c.f. [4], [5]) to the diffractive phase φs, where the weights are

chosen in such a way that ensures only one “jump” occurs per fade. This allows us to associate



41

each phase transition or cycle slip with a fading amplitude and duration. We achieve this using

a penalty weight that is 1 at the minima of fade segments and sufficiently large (e.g. 10,000) at

all other times. This penalty applies to the magnitude of the derivative of the TVD fit so that

the algorithm only estimates a jump at times corresponding to minima in signal amplitude. We

remove an overall negative bias in the diffractive phase (modulo 1 cycle), which can be understood

as the “tail” of the histograms shown in Figure 2.4. Finally, we quantize the fit by rounding to

the nearest integer. An example of the results of this process are shown with dashed black lines in

Figure 2.6. The occurrences of individual phase transitions or cycle slips are obtained by finding

times where the difference of this signal is non-zero. Since each jump is constrained to occur at

a fade minimum, we can associate each phase transition or cycle slip with a single fade and its

corresponding amplitude and duration traits.

Table 2.2: Scintillation Parameters

S1T1 S1T2 S1T3 S2T1 S2T2 S2T3 S3T1 S3T2 S3T3 S4T1 S4T2 S4T3

S4

L1 0.36 0.36 0.36 0.50 0.51 0.51 0.70 0.70 0.70 0.85 0.86 0.86
L2 0.52 0.53 0.53 0.73 0.73 0.72 0.93 0.92 0.92 1.00 1.02 1.02
L5 0.56 0.56 0.56 0.77 0.77 0.76 0.96 0.95 0.94 1.02 1.04 1.04

τ
L1 1.29 0.61 0.26 1.20 0.56 0.24 1.07 0.49 0.21 0.94 0.44 0.19
L2 1.32 0.62 0.27 1.18 0.55 0.24 1.00 0.47 0.20 0.86 0.40 0.17
L5 1.32 0.62 0.27 1.17 0.54 0.24 0.99 0.46 0.20 0.84 0.39 0.17

2.4 Results and Analysis

Here we analyze and discuss the fade and cycle slip occurrences obtained using the methods

outlined in the last section. We first describe cycle slip rates with respect to fading amplitude and

duration, showing how these rates change for relevant S4, τ , and C/N0 parameters. We then shift

our focus to the distribution of cumulative cycle slip error, providing tables of cycle slip rates and

correlation coefficients of error among two different signal frequencies for the different simulation

scenarios.
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2.4.1 Cycle Slip Occurrence Versus Fade Depth and Duration

Figure 2.7 shows the fraction of fades at different amplitudes that contain cycle slips. The

scintillation strength increases for each panel from left to right, and we can see corresponding

changes in the dashed lines that show the pdf of fade amplitudes. As is well-established, the

stronger scintillation leads to deeper fades [42]. The solid lines show what fraction of fades with

a given amplitude experience cycle slips, with each line corresponding to a different C/N0 value.

Here we see how a lower C/N0 leads to an increase in the number of fades with cycle slips at deeper

fading amplitudes. This corresponds with the larger influence of noise at lower signal amplitudes.

We also observe how as scintillation strength increases the cycle slip occurrence per fade increases

at all fading depths and for all C/N0 values. However, at shallower fading depths this increase is

proportionally greater and is present in all C/N0 values equally. Since noise cannot induce cycle

slips as easily at low fading amplitudes, this implies that phase transitions must be the cause.

Figure 2.8 shows the fraction of fades of different durations that contain cycle slips. Similar

to Figure 2.7, the pdf of fade durations is provided with dashed lines. The decorrelation time

decreases in each panel from left to right, highlighting how longer fades are less frequent for shorter

decorrelation times. Again, the solid lines show what fraction of fades contain cycle slips. There

is a general trend of increasing cycle slip fraction for longer fade durations, reflecting how when

a signal spends more time at low amplitude, there is a greater chance that random perturbation

due to noise will cause cycle slips. We see this in the leftmost panel, where a larger τ value leads

to longer fades, and increased noise leads to increased cycle slips at these longer fade durations.

However, as fading rate increases (with a decrease in τ) the fade durations become shorter and the

dependence of cycle slip occurrence on C/N0 diminishes.

2.4.2 Cumulative Cycle Slip Occurrence

Let χ denote the cumulative occurrence of cycle slips measured over 5-minute intervals.

We compute χ for each independent simulation interval, for each signal frequency, and for all
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Figure 2.7: Shows the rate of cycle slips per fade as a function of fade amplitude (i.e. fading depth)
for each baseline C/N0. The scintillation parameters demonstrate increasing scintillation strength
with S4 = 0.6, 0.8, 0.9, 1.0 and τ = 0.6, 0.5, 0.5, 0.4 for the respective panels (which corresponds to
L5 signal for scenarios S1T2, S2T2, S3T2, and S4T2). A histogram estimate of the fade amplitude
pdf is also shown in the dashed line. In all cases, lower baseline C/N0 leads to an increase in cycle
slips at deeper fades, while increase in scintillation strength leads to an increase in cycle slips for
all C/N0 values and especially at shallower fade amplitudes.

Figure 2.8: Shows the rate of cycle slips per fade as a function of fade duration for each baseline
C/N0. The scintillation parameters are S4 ≈ 0.95 and τ ∈ {1.0, 0.5, 0.2} for each of the respective
panels (which corresponds to L5 signal for scenarios S3T1, S3T2, and S3T3). A histogram estimate
of the fade duration pdf is also shown in the dashed line. We generally see that lower baseline C/N0

leads to an increase of cycle slip rates, but especially so for low fade rates (τ = 1) and long fade
durations. At higher fade rates (lower τ) all C/N0 values show similar fade rates at all durations.

scintillation scenarios (including different C/N0 values). For the volume of simulations used in this

study, this results in around 12,500 samples for each combination of signal, C/N0, and scintillation
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scenario. We histogram these samples in order to estimate the probability mass function (pmf)

of cumulative cycle slip occurrence over 5 minutes. Figure 2.9 shows one scenario of the resulting

pmf on three frequencies. These pmfs follow the Skellam distribution, which is expected when

we assume cycle slip occurrence is a Poisson process [70]. The authors in [24] also consider a

Poisson process model for cycle slip occurrence, however they do not consider the cumulative effect

of positive and negative cycle slips. The Skellam distribution describes the difference between

two Poisson processes, and in this case allows us to interpret positive and negative cycle slips as

individual Poisson processes with rate parameters µ+ and µ− [70]. We found the mean of the

distribution to be essentially zero for all scintillation parameter choices, indicating that the rates

for positive and negative cycle slip occurrence are equal, i.e. µ+ = µ−. The resulting symmetric

Skellam distribution can be written:

p(n;µ) = e−µI|n|(µ) (2.12)

where n is the independent variable reflecting cumulative cycle slips, I|n| is the modified Bessel

function of the first kind, and µ = 2µ− = 2µ+ is interpreted as the overall rate of cycle slip

occurrence. We fit symmetric Skellam distributions to cumulative cycle slip histograms for each

signal and scintillation scenario considered in this study. Table 2.3 shows the cycle slip rate values

obtained via this process. Figure 2.10 visually summarizes the cycle slip rate results for the L5

frequency. Plugging the appropriate rate parameter into the Skellam distribution provides the

distribution of cumulative phase error due to cycle slips over arbitrary time periods.

As an attempt to characterize the joint distribution of cumulative cycle slip occurrence, we

can compute the Pearson correlation coefficient for cumulative cycle slip error among each frequency

pair. Since the variance of a symmetric Skellam distribution is equal to its overall rate parameter

µ, we compute the correlation coefficient as:

cov(χk, χl)√
µkµl

(2.13)

where k and l correspond to the two different frequencies. Table 2.4 provides the Pearson correlation

coefficients for each frequency pair derived from the same χ samples used above. For lower S4 values,
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Figure 2.9: Examples of pmf estimates obtained from histograms of the cumulative cycle slip error
over 5-minute windows. This particular case shows the three frequencies for scenario S4T2 given
in Table 2.2, and for a baseline C/N0 of 36 dB-Hz. The black lines show the results of fitting a
symmetric Skellam distribution to the pmfs.

there are some instances where cycle slip occurrence was too low to compute valid correlation

coefficients, and those entries are marked with dashes. In general, the correlation coefficients show

larger values for less noise (higher C/N0) and stronger scintillation. The L2/L5 signal pair shows

the highest correlation, followed by L1/L2 then L1/L5, which is expected behavior according to

their frequency ratios. At low C/N0, the correlation is practically zero for moderate scintillation,

where phase transition behavior mostly coincides with deep fades and is susceptible to the random

influence of noise. However, for stronger scintillation, the correlation increases to similar values as

obtained for the noise-free case. This is in agreement with our earlier observations that more phase

transitions occur with shallow fading amplitudes, and so noise has less influence to alter phase

transition behavior. While the correlation coefficient provides some useful information about how

similar the cumulative errors will be between two frequencies, it is important to stress that it does

not necessarily describe the full joint distribution of errors for the two frequencies.
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Figure 2.10: Cycle slip rate dependence on baseline C/N0, decorrelation time, and S4 index. The
cycle slip rates increase as baseline C/N0 decreases, as decorrelation time (τ) decreases, and as scin-
tillation strength (S4) increases. The rates are derived from fitting the rate parameter of symmetric
Skellam distributions to empirical distributions of cumulative cycle slip error over 5 minutes. The
scintillation parameters increase in strength with S4 = 0.6, 0.8, 0.9, 1.0 for the respective panels,
while the different colored lines indicate different decorrelation times τ ≈ 0.2 − 1.2. These scin-
tillation parameters correspond to the different scenarios given for the L5 signal in Table 2.2, and
demonstrate the general relationship between cycle slip rate and different factors given in Table
2.3.

2.5 Conclusion

In this chapter, we used simulations of strong equatorial scintillation to analyze the com-

pounding effects of diffraction and noise on cycle slip occurrence. The key confirmations and

findings from the results of our simulations are as follows. 1) As scintillation strength increases

there is a notable increase in cycle slip occurrence rates for all baseline C/N0 values at shallower

fade amplitudes. This suggests that phase transitions are a dominant mechanism for cycle slips in

this regime (as opposed to noise-induced), and that fading depth is not a consistent indicator for

cycle slip probability as scintillation strength increases. 2) The Skellam distribution does a good

job of describing the cumulative impact of cycle slips on phase measurement errors, suggesting that

cycle slip occurrence can indeed be modeled as a Poisson process. The distribution was symmetric,

supporting the observation that positive and negative phase transitions or cycle slips are equally

likely. We provided cycle slip rate parameters that can be used to describe error distributions for

a wide variety of equatorial scintillation conditions. 3) We provided correlation coefficients for the
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cumulative impact of cycle slips on different frequency pairs. The correlation increases as scin-

tillation strength increases, which also suggests that correlated diffractive phase transitions (and

not just canonical fading plus noise) play an increasingly important role in cycle slip occurrence

for stronger scintillation. We want to emphasize that the cycle slip rate and correlation results

presented here do not consider the interaction between noise and tracking loop implementations,

but they should provide a good baseline for assessing or predicting cycle slip error in unfiltered

phase measurements.
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Table 2.3: Cycle Slips Per Minute

C/N0 [dB-Hz] S1T1 S1T2 S1T3 S2T1 S2T2 S2T3 S3T1 S3T2 S3T3 S4T1 S4T2 S4T3

Noise
Free

L1 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.17 0.40 0.48 0.98 2.55
L2 0.00 0.00 0.01 0.11 0.22 0.53 0.73 1.69 4.32 1.80 4.48 12.09
L5 0.01 0.01 0.02 0.18 0.34 0.83 0.95 2.13 5.95 2.20 5.15 14.76

50
L1 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.19 0.43 0.54 1.10 2.70
L2 0.00 0.01 0.01 0.13 0.25 0.57 0.90 1.83 4.60 2.09 4.88 13.67
L5 0.01 0.01 0.02 0.21 0.39 0.91 1.12 2.34 6.34 2.44 5.66 16.24

48
L1 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.45 0.58 1.14 2.79
L2 0.00 0.01 0.01 0.14 0.26 0.58 1.00 1.88 4.63 2.24 4.96 13.85
L5 0.01 0.01 0.02 0.24 0.41 0.95 1.25 2.37 6.36 2.67 5.90 16.19

46
L1 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.20 0.46 0.68 1.20 2.84
L2 0.00 0.01 0.01 0.16 0.28 0.60 1.15 2.07 4.79 2.51 5.16 14.36
L5 0.01 0.02 0.03 0.26 0.44 0.99 1.43 2.55 6.57 3.06 6.11 16.55

44
L1 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.23 0.49 0.83 1.35 2.94
L2 0.00 0.01 0.01 0.21 0.32 0.64 1.43 2.32 5.20 3.04 5.47 15.32
L5 0.01 0.02 0.03 0.33 0.50 1.03 1.77 2.95 6.82 3.68 6.65 17.38

42
L1 0.00 0.00 0.00 0.00 0.00 0.01 0.17 0.30 0.54 1.06 1.57 3.16
L2 0.01 0.01 0.01 0.29 0.41 0.72 1.88 2.77 5.52 3.78 6.44 16.41
L5 0.01 0.02 0.03 0.45 0.64 1.14 2.35 3.33 7.40 4.60 7.72 18.54

40
L1 0.00 0.00 0.00 0.01 0.01 0.01 0.26 0.40 0.64 1.53 1.93 3.60
L2 0.01 0.01 0.02 0.44 0.56 0.89 2.64 3.55 6.38 5.09 7.69 18.64
L5 0.02 0.03 0.05 0.70 0.91 1.43 3.32 4.33 8.31 5.91 9.01 20.45

38
L1 0.00 0.00 0.00 0.01 0.01 0.02 0.47 0.62 0.88 2.28 2.81 4.56
L2 0.02 0.03 0.03 0.74 0.86 1.22 3.81 4.78 7.80 7.42 9.72 21.18
L5 0.04 0.06 0.08 1.16 1.41 1.86 4.97 6.02 9.99 8.05 11.43 23.58

36
L1 0.00 0.00 0.00 0.03 0.04 0.05 0.95 1.07 1.36 3.60 4.35 6.30
L2 0.05 0.07 0.09 1.39 1.51 1.91 6.28 7.28 10.89 11.65 13.68 25.61
L5 0.11 0.15 0.18 2.01 2.27 2.84 7.64 8.98 13.70 11.82 16.12 27.90



49

Table 2.4: Cumulative Cycle Slip Error Correlation Coefficient

C/N0 [dB-Hz] S1T1 S1T2 S1T3 S2T1 S2T2 S2T3 S3T1 S3T2 S3T3 S4T1 S4T2 S4T3

Noise
Free

L1, L2 - - - 0.04 0.03 0.02 0.04 0.08 0.16 0.08 0.11 0.26
L1, L5 - - - 0.02 0.00 0.00 0.05 0.07 0.14 0.05 0.12 0.25
L2, L5 0.40 0.45 0.43 0.55 0.56 0.58 0.59 0.61 0.68 0.59 0.65 0.72

50
L1, L2 - - - 0.04 0.05 0.01 0.05 0.10 0.17 0.07 0.14 0.28
L1, L5 - - - 0.01 0.01 0.02 0.05 0.07 0.16 0.05 0.12 0.27
L2, L5 0.32 0.40 0.40 0.42 0.48 0.54 0.49 0.57 0.66 0.51 0.62 0.71

48
L1, L2 - - - 0.04 0.04 0.02 0.05 0.09 0.17 0.06 0.14 0.28
L1, L5 - - - 0.02 0.01 0.02 0.04 0.07 0.15 0.06 0.11 0.27
L2, L5 0.30 0.37 0.40 0.37 0.45 0.52 0.45 0.54 0.65 0.47 0.60 0.70

46
L1, L2 - - - 0.03 0.06 0.03 0.05 0.09 0.16 0.06 0.13 0.29
L1, L5 - - - 0.00 0.02 0.02 0.05 0.06 0.16 0.05 0.10 0.27
L2, L5 0.27 0.33 0.37 0.31 0.40 0.50 0.38 0.50 0.64 0.41 0.56 0.70

44
L1, L2 - - 0.04 0.04 0.06 0.03 0.04 0.07 0.16 0.05 0.13 0.29
L1, L5 - - 0.00 0.01 0.03 0.01 0.06 0.06 0.15 0.06 0.11 0.27
L2, L5 0.19 0.27 0.33 0.23 0.34 0.46 0.30 0.44 0.61 0.34 0.52 0.68

42
L1, L2 - - 0.03 0.03 0.06 0.03 0.04 0.07 0.16 0.06 0.12 0.29
L1, L5 - - 0.00 0.00 0.00 0.03 0.04 0.05 0.15 0.04 0.09 0.28
L2, L5 0.17 0.21 0.28 0.17 0.27 0.40 0.25 0.38 0.58 0.27 0.46 0.66

40
L1, L2 - - 0.03 0.02 0.04 0.03 0.03 0.06 0.16 0.04 0.13 0.28
L1, L5 - - 0.02 0.01 0.03 0.03 0.03 0.05 0.16 0.03 0.08 0.27
L2, L5 0.12 0.13 0.18 0.10 0.19 0.34 0.17 0.29 0.52 0.18 0.39 0.64

38
L1, L2 0.00 0.00 0.01 0.03 0.01 0.03 0.02 0.05 0.15 0.04 0.13 0.29
L1, L5 0.00 0.00 0.03 0.02 0.00 0.03 0.01 0.03 0.15 0.02 0.09 0.28
L2, L5 0.07 0.06 0.11 0.07 0.12 0.25 0.09 0.19 0.45 0.14 0.32 0.60

36
L1, L2 0.00 0.03 0.01 0.00 0.01 0.01 0.01 0.05 0.14 0.04 0.10 0.29
L1, L5 0.00 0.00 0.02 0.03 0.03 0.02 0.00 0.05 0.16 0.01 0.11 0.29
L2, L5 0.06 0.05 0.04 0.02 0.05 0.17 0.07 0.14 0.39 0.09 0.27 0.56



Chapter 3

Occurrence of Challenging Cycle Slips in Real-World Data

3.1 Introduction

In Chapter 2, we provided a characterization of cycle slips that occur due to the combined

effects of phase transitions and noise. In this chapter, we will take a closer look at cycle slips

occurrence due to these effects in actual GPS scintillation data sets. In particular, we look at

the Ascension Island and Hong Kong scintillation datasets containing fade-induced cycle slips that

challenge typical detection and repair algorithms. For the first dataset, we observe carefully de-

trended phase records from multi-frequency GNSS signals and attempt to manually interpret the

occurrence of cycle slips. This process provides valuable insight into the challenges and limitations

of cycle slip detection. In our work, we utilize high-rate (100 Hz) phase and intensity measurements

to interpret the many and frequent cycle slip occurrences due to diffractive ionosphere scintillation.

We show how these slips can occur over the course of 0.5-1 seconds or longer and how sometimes

several cycle slips can occur in the span of less than a minute. With the second dataset, we apply

and assess the performance of two cycle slip mitigation techniques from [20] and from [12], which

is an adapted version of the cycle slip filtering algorithm originally presented in [85]. Although we

are able to manually identify many cycle slips using these high-rate measurements, as we will show,

these techniques struggle to estimate slips correctly.

In the next section, we discuss the geodetic detrending technique we apply to the real-world

scintillation datasets in order to reduce the effect of non-dispersive phase components. We also

0 The content of this chapter is largely adapted from the conference papers in [11], [9], and [12].
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discuss additional background on different phase combinations and their varying sensitivities to

cycle slips. In Section 3.3, we introduce motivating examples of deep-fade-induced phase transitions

during strong scintillation and multipath. In the Section 3.4, we introduce a triple-frequency cycle

slip detection algorithm from [20] and assess its performance on the Hong Kong scintillation dataset.

In the Section 3.5, we introduce the algorithm from [12]. Finally, we provide concluding remarks

and summarize the main challenges associated with cycle slips under harsh signal conditions in

Section 3.6. Overall, the purpose of this chapter is to serve as motivation for our development of

yet another approach to cycle slip mitigation in chapters 4 and 5.

3.2 Background

3.2.1 Geodetic Detrending

When introducing the GNSS code and carrier phase measurements models from Section

1.2.2 in Chapter 1, we discussed the relative contributions of various phase components. In order

to better see diffraction-induced cycle slips in the phase measurements, it is important to remove

the large contributions from the geometry term G. That is why many cycle slip algorithms adopt

the geometry-based approaches that utilize information from other received satellite signals in

order to resolve the non-dispersive signal phase component ([15], [59]). Indeed, optimal cycle slip

mitigation techniques should use all available information, including knowledge of non-dispersive

phase components. Therefore, we use the relatively straightforward geodetic detrending technique

to remove a majority of non-dispersive phase components from our signals. Originally applied in

[44] in order to isolate scintillation effects in 1 Hz data, this method is explained in detail in [54].

Here we outline the essential details.

The first step is to remove all signal components that can be estimated a-priori. Since we are

dealing with a stationary antenna, the satellite range can be obtained by using the known receiver

antenna position and precise orbits supplied by the International Geodetic Service (IGS) [48]. We

also estimate the satellite clock and antenna phase variations using IGS products. We use the
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Figure 3.1: Shows the overlay of derivative of L1/L2 IF combinations of carrier phase. An overall
linear trend has been removed for clarity. Each color corresponds to a different PRN and the white
line shows the derivative of receiver clock variation that is obtained by averaging the IF derivatives.

simple Hopfield model for troposphere delay estimation, which should be accurate to within several

centimeters [39]. Combining these factors gives an estimate for the non-dispersive component (G

in eqs. 1.4 and 1.5) except for the receiver clock term.

The next step is to estimate the receiver clock variations. Following the approach in [44], we

first remove the non-dispersive components estimated in the first step from each of the code and

carrier phase measurements and for each satellite (in our case, we considered only GPS satellites).

Then we take the IF combination of the L1 and L2 carrier phase measurements, which at this

point should only contain the receiver clock variations, carrier bias, cycle slips, and noise. Tak-

ing the discrete derivative of the IF combination eliminates the carrier bias and turns cycle slips

into outliers. By averaging the IF combinations across all satellites we obtain an estimate of the

derivative of receiver clock variations. Figure 3.1 illustrates this process applied to the Ascension

Island scintillation dataset that was introduced in Section 1.4.0.1, with the white line showing the

estimated clock variation derivative. We then integrate this result to obtain the final receiver clock

variations and remove them from each of the code and carrier phases to obtain our final detrended

observations. Note that these observations will still contain all variations due to the ionosphere,

but the non-dispersive components have been removed at sub meter-level accuracy.
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3.2.2 Linear combinations

As we saw in Chapter 1, given a set of code and carrier phase observations we can produce

various linear combinations with desirable properties, which have been a popular tool in the de-

tection of cycle slips. In particular, we discussed how geometry- and ionosphere-free combinations

are useful when it comes to reliable cycle slip detection. However, it is also important that linear

combinations used for cycle slip detection are actually sensitive to cycle slips that occur. Table

3.1 lists the coefficients for various measurement combinations for GPS L1, L2, and L5 signals,

including 4 new combinations that we did not introduce in Chapter 1 but which we will use for the

cycle slip detection algorithm in Section 3.4.

The first three new combinations, which we denote YL1, YL2, and YL5, are code and single-

carrier GF combinations. In each combination, the coefficient for the respective carrier is equal

to one while the other two carrier coefficients are zero. Meanwhile the code phase coefficients

are optimized to produce a combination that cancels the carrier phase geometry component while

minimizing the overall combination variance given by Equation 1.9. The combinations allow for

detection of large cycle slip amplitudes on individual carriers, and play a role analogous to the

HWM combination that was used in the TurboEdit algorithm from Chapter 1 Section 1.2.4. The

fourth new combination is a GF carrier-phase-only combination denoted GF
(1)
L1,L2,L5. Its coefficients

are chosen such that they maximize the ratio between a 1-cycle slip on the L1 signal and the

noise variance corresponding to the time-difference observation ∆GF
(1)
L1,L2,L5 = GF

(1)
L1,L2,L5(ti) −

GF
(1)
L1,L2,L5(ti−1), which is assumed to be twice the variance of the undifferenced observation. This

combination is designed to be sensitive to slips in the L1 signal that are not easily identified in the

first signal.

In [20], the authors assume independent noise with code noise standard deviations σP1
=

σP2
= 0.15m and σP5

= 0.1m (where the lower code noise on L5 corresponds to its higher chipping

rate) and carrier noise standard deviations σL1
= σL2

= σL5
= 0.002m. While signals under

harsh conditions, and under ionosphere diffraction specifically, are subject to higher levels of both
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Name Type Coefficients
YL1 GF -0.235 -0.235 -0.529 1.000 0.000 0.000
YL2 GF -0.235 -0.235 -0.529 0.000 1.000 0.000
YL5 GF -0.235 -0.235 -0.529 0.000 0.000 1.000

GIFL1,L2,L5 GIF 0.215 -1.215 1.000

GF
(1)
L1,L2,L5 GF 1.000 -0.370 -0.630

GF
(2)
L1,L2,L5 GF 1.000 -2.780 -1.780

IFL1,L2 IF -2.546 1.546 0.000
IFL1,L5 IF -2.261 0.000 1.261
GFL1,L2 GF 1.000 -1.000 0.000
GFL1,L5 GF 1.000 0.000 -1.000

Table 3.1: Various linear combinations of observables useful for triple-frequency cycle slip detection.

code and carrier phase noise, for consistency we will use their values in when implementing their

algorithm in Section 3.4. We also note that since the proportion of these noise amplitudes will

be similar under diffraction, the coefficients in Table 3.1 would be approximately the same for

combinations optimized for ionosphere scintillation anyways.

In order to assess the sensitivities of these combinations to different cycle slips, a useful

metric is the ratio of the magnitude of the cycle slip effect to the noise standard deviation for a

particular combination. This is essentially the slip signal-to-noise ratio (SNR). Let ∆z ∈ Z
3 be

the vector representing the cycle slip amplitude at a given epoch for the three carriers, and let

b = diag(λ1, λ2, λ3)∆z be the bias vector introduced into the carrier measurements after a slip

occurrence. Then |cTΦb| is the magnitude of the cycle slip effect on the linear combination with

carrier coefficients cΦ and the standard deviation of noise is provided by Equation 1.9 from Chapter

1. We can then compute the SNR metric as the ratio of these values. To do this, let us consider

potential slips at a given epoch of up to one cycle in amplitude. This allows for 3 possible outcomes

(-1, 0, +1 cycle) on each of the 3 carriers, for a total of 33 = 27 possible combinations. Out of

these, one is the no-slip case (0, 0, 0) and half the remaining cases are redundant since they are

additive inverses. This leaves 13 one-cycle combinations.

Table 3.2 lists each combination’s SNR measure for each of the 13 possible single-slip scenar-

ios. Blank cells indicate when a combination is entirely insensitive to a slip. While the assumed
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YL1 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
YL2 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
YL5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

GIFL1,L2,L5 0.3 12.9 80.5 93.4 93.1 80.2 13.2 106.3 67.3 26.1 173.6 186.5 160.7

GF
(1)
L1,L2,L5 24.5 76.8 40.3 36.5 12.0 64.8 101.3 113.3 141.6 178.1 28.3 48.5 105.2

GF
(2)
L1,L2,L5 136.6 27.6 70.8 98.4 38.2 65.8 164.2 126.0 93.3 191.8 32.7 60.2 5.1

IFL1,L2 18.0 81.3 18.0 63.4 81.3 63.4 144.7 81.3 144.7 63.4 144.7 18.0
IFL1,L5 21.0 83.1 83.1 21.0 62.1 62.1 83.1 145.2 145.2 62.1 21.0 145.2
GFL1,L2 19.1 67.3 19.1 86.3 67.3 86.3 153.6 67.3 153.6 86.3 153.6 19.1
GFL1,L5 22.8 67.3 67.3 22.8 90.1 90.1 67.3 157.4 157.4 90.1 22.8 157.4

Table 3.2: Shows the sensitivity of each combination in Table 3.1 to different cycle slip amplitudes.
Different colors are shown to help indicate the sensitivity, with yellow being largest and purple
being smallest.

noise levels are too low to correspond to severe scintillation conditions, the values in Table 3.2 still

provide some important insights into the limitations of cycle slip detection. For instance, we see

that all combinations using code phase (YL1, YL2, and YL5) have fairly low SNR metrics compared

to combinations only using carrier phase. Also, the SNR metric for L1 slips is generally much

smaller than those for L2 and L5. This is due to the L1 signal’s shorter wavelength and the wider

spectral gap between L1 and the lower-frequency bands. In the next section, we will use the GIF

combination (listed as GIFL1,L2,L5 in tables 3.1 and 3.2) to assess slip occurrences in the scintillation

time series.

3.3 Analysis of challenging cycle slips

We want to assess the occurrence of this slips, and in doing so relate them back to our

prototypical examples of canonical fades in Figure 2.5 from Chapter 2. Recall that there were 3

cases: A) a canonical fade occurs but there is no cycle slip, B) a canonical fade occurs and there is

a phase transition that leads to a cycle slip, C) a canonical fade occurs during which noise appears

to induce a cycle slip. We refer to these three prototypical examples when analyzing the phase

transitions in the real data.
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Figure 3.2: Examples of L1/L2 and L1/L5 IF combinations and the L1/L2/L5 GIF combination
using 100 Hz carrier phase measurements from the Ascension Island dataset. Bottom panel shows
a zoomed-in portion of the most disturbed period.

3.3.1 Ascension Island Scintillation

We first consider the 2013-03-10 Ascension Island scintillation event for GPS PRN 24, which

we introduced in Section 1.4.0.1. Figure 3.2 shows the IF and GIF phase combinations computed

using the detrended 100 Hz phase measurements. The discrete jumps in these combinations indicate

the presence of diffraction-induced cycle slips. The bottom panel of Figure 3.2 shows a zoomed-

in portion of the most intense diffractive effects around minutes 75 to 80. The jumps in these

combinations show multiple cycle slips occurring each minute.

Figures 3.3 and 3.4 show examples of canonical fades that occur on the L2 and L5 signals.

Based on analysis of the GIF combination, there are no cycle slips caused by ionosphere diffraction

in any of these examples, and for the most part the phase behavior corresponds well with that shown
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in simulation scenarios A and B from Section 2.1.1. Figure 3.5 shows a (presumably) noise-induced

cycle slip occurring in the middle of an otherwise canonical fade. This behavior is very similar

to that of simulation scenario C. The instantaneous nature of the phase transition during this

noise-induced cycle-slip helps distinguish it from full-cycle transitions corresponding to simulation

scenario B. The GIF combination during these events remains relatively constant before and after

the fades, indicating the absence of full-cycle phase transitions.

Figure 3.6 show an example of a full-cycle transition that occurs during deep fades in the

L2 and L5 signals. Though there is clearly a bias discrepancy among the detrended phases, it is

not immediately clear which of the fading signals underwent a full-cycle transition. The average

value of the GIF combination before versus after the jump event indicates a jump of about 0.29.

Referencing Table 3.1, we deduce that this jump corresponds to a full-cycle transition in the L2

signal since 1.215 × λL2 = 0.297. Figure 3.7 shows another example of this behavior. Beginning

with weak and canonical fades on all three signals, the L2 and L5 signals experience additional

weak fading 1.25 seconds after their initial fades. Again, the detrended phase biases imply a full-

cycle phase transition. There is a jump in the GIF combination signal value from before and

after the fade event of around 0.25, corresponding to a full-cycle transition in the L5 signal (since

1 × λL5 = 0.255). The detrended signal intensity for L5 only shows around -10 dB fading when

this transition must have occurred. This corroborates our finding from Chapter 2 that weak to

moderate fades may be as important as very deep fades when it comes to the occurrence of cycle

slips in very strong scintillation.

Figures 3.8, 3.9, and 3.10 all show examples of consecutive deep fades, mostly in the L2

and L5 signals. Just as in each of the previous examples, whenever moderately sharp fades occur,

the carrier phase exhibits an approximate half-cycle phase transition. For each of these examples,

parsing out the true phase behavior is an exercise in distinguishing canonical half-cycle transitions

from those that are actual full-cycle transitions. The phase behavior from the examples in Figures

3.10 and 3.9 are particularly messy in this regard. The GIF combination proves to be a useful

tool in identifying the occurrence and culprit of some full-cycle phase transitions. However, these
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Figure 3.3: Example of canonical fade behavior occurring on L2 and L5 signals at around 76311
seconds. L2 shows a sharp half-cycle phase change, corresponding to simulation scenario B, whereas
L5 shows a slightly more gradual transition similar to scenario A. The GIF combination bias stays
the same before and after the fade, indicating no cycle slip (phase transition) occurred.

examples also show how the jumps in average GIF combination values are neither immediate nor

easy to measure due to persistent corruption by diffractive fluctuations.

3.3.2 Hong Kong Scintillation Example

We now consider Hong Kong scintillation dataset that we introduced in Section 1.4.0.2.

After applying the geodetic detrending technique from Section 3.2.1, we computed the GIF phase

combination and the dual-frequency IF combinations of phase. In [63], the authors show how the

diffraction effects are somewhat suppressed in ionosphere-free combinations of carrier phase. This

makes identification of cycle slips easier, especially when using very-high-rate (100 Hz) carrier phase

measurements. We performed a manual cycle slip detection and correction procedure by iteratively

identifying and removing cycle slips from the three 100 Hz phase measurements. Identification

of slips was done by observing and interpreting the behavior of jumps in the GIF, IF, and GF
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Figure 3.4: Example of a canonical fade on the L5 signal. The behavior is similar to that of
simulation scenario B. Similar to the example in Figure 3.3, there were no full-cycle transitions
during this deep fade.

combinations during fades in signal intensity, as discussed in the last section. The result of this

procedure is summarized in the bottom panel of Figure 3.11, which shows the now relatively smooth

IF combinations that have been rid of large jumps. We found 18 slips on L1, 53 on L2, and 78

on L5. These results are roughly consistent with the cycle slip rates we found in Chapter 2. We

acknowledge that there are likely errors in this procedure, and in particular cycle slips occurring

on all three signals simultaneously are extremely difficult to detect in these IF combinations (e.g.

see Table 3.2) or during ionosphere diffraction in general. Nevertheless, the residuals of the IF and

GIF combinations in Figure 3.11 give us some confidence that most of the cycle slips are correctly

identified, and that the results of this procedure are adequate for assessing the performance of the

different cycle slip mitigation methods in the rest of this chapter.
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Time Amplitude

7554 0 0 -1 7849 0 1 0 8610 0 1 1 8893 0 0 1
7558 0 -1 -1 7915 0 1 1 8634 0 1 1 8898 1 0 0
7582 -1 -1 -1 7958 0 0 1 8653 0 1 1 8901 -1 0 0
7616 0 0 -1 8285 0 1 1 8688 0 0 1 8913 0 0 1
7636 0 0 1 8299 0 -1 0 8694 0 1 1 8948 0 1 0
7638 1 0 0 8321 0 -1 -1 8699 0 1 0 8957 0 -1 -1
7640 1 1 1 8337 0 0 -1 8712 -1 0 0 8962 0 0 1
7647 0 0 -1 8341 0 0 1 8723 0 -1 -1 8975 0 1 1
7662 0 0 -1 8342 0 0 1 8732 0 1 1 8979 0 0 1
7673 0 -1 -1 8389 0 0 -1 8743 0 -1 -1 8995 0 1 1
7689 -1 1 0 8391 -1 0 0 8761 0 0 -1 9016 0 0 1
7695 0 -1 1 8442 0 1 1 8766 0 1 1 9038 0 0 -1
7708 0 0 -1 8463 0 0 -1 8773 0 0 1 9047 0 1 1
7710 0 1 0 8466 0 0 1 8780 0 1 1 9090 0 0 1
7715 0 0 -1 8472 0 -1 -1 8784 0 0 -1 9123 0 -1 0
7730 1 0 0 8481 0 -1 -1 8800 0 1 1 9161 0 -1 -1
7732 0 1 0 8503 0 -1 -1 8834 0 0 -1 9177 0 -1 -1
7733 0 0 1 8521 1 0 0 8848 0 0 -1 9179 1 0 0
7757 0 -1 -1 8538 0 -1 -1 8850 -1 0 0 9189 0 -1 -1
7764 1 0 0 8540 0 1 1 8872 0 -1 -1 9207 0 1 1
7815 0 -1 0 8554 0 -1 -1 8877 0 0 1 9247 0 -1 -1
7817 0 1 1 8563 0 1 1 8883 1 0 0 9305 0 1 1
7818 0 0 -1 8585 -1 0 0 8889 0 -1 -1 9398 0 0 -1
7821 0 1 1 8589 -1 0 -1 8890 0 -1 -1 9432 0 0 1
7845 0 -1 0 8592 0 0 1 8892 0 1 1 9540 0 0 -1

Table 3.3: Manually detected cycle slip occurrences. Occurrence times are measured in seconds
from 11:00 UT.
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Figure 3.5: Examples of canonical fades on the L5 signal. The first canonical fade at 76485 seconds
does not show a corresponding change in the GIF bias, and presumably no cycle slip has occurred.
The second fade appears to show a noise-induced cycle-slip, corresponding to simulation scenario
D. We see a corresponding drop in the GIF combination bias.

3.4 Cycle Slip Mitigation Performance: De Lacy 2012

Here we assess the effectiveness of cycle slip mitigation using the algorithm presented in [20].

We test the algorithm using 1 Hz data, for which it was designed. It makes use of several of the

linear combinations of observables from Table 3.1. Just like we saw for the TurboEdit algorithm in

Chapter 1, a common approach in many cycle slip algorithms is to first use both code and carrier

phase measurements together in order to identify large cycle slips. Any larger cycle slips (more

than 2 cycles) are most likely caused by receiver processing errors or loss-of-lock and can be easily

detected in such combinations. Once these large jumps are identified, carrier phase combinations

are then used to detect and correct smaller slips. This technique is known as cascading detection

and is used by many other authors including [50], [102], [2], [14]. In this section, we will first

briefly describe the algorithm steps, then we will show and assess its performance in detecting and
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Figure 3.6: Using detrended phase and signal intensity, shows an interesting example of triple-
frequency carrier behavior where it it is not clear from the individual phase records which signals
(if any) accrue full cycle transitions and which just show canonical fade behavior. Careful measuring
of the change in the average GIF combination value before and after the fade event reveals a jump
of around 0.29, suggesting that a full-cycle transition occurred in the L2 signal only.

estimating cycle slips in the Hong Kong dataset.

3.4.1 Algorithm Description

The De Lacy algorithm uses the YL1, YL2, YL5, GIFL1,L2,L5, GF
(1)
L1,L2,L5, and GF

(2)
L1,L2,L5 com-

binations from Table 3.1 and compares the magnitudes of their epoch-wise differences (e.g.∆Yi =

Yi(t) − Yi(t − 1)) to a threshold in order to detect slips. Similar to the Turboedit algorithm we

assessed in Chapter 1, for each detection the authors suggest a 4σ threshold (i.e. 4 times the stan-

dard deviation of ∆Yi). The steps to detect and estimate cycle slips are performed at each epoch

of time-differenced combinations:

(1) The time-differenced combinations ∆YL1, ∆YL2, ∆YL5 are each tested for large slip occur-

rences using a threshold of 0.41 meters for i = 1, 2, 3. If a slip is detected in any of the
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Figure 3.7: Using detrended phase and signal intensity, shows moderate canonical fades on the L1,
L2 and L signals. There is a post-fade discrepancy in the L2 and L5 signals suggesting a possible
full-cycle transition. A change in average GIF combination value of around 0.25 before versus after
the fades suggests that the L5 signal underwent a full-cycle transition.

combinations, move to step 4.

(2) The time-differenced combination ∆GIFL1,L2,L5 is tested against a threshold of 1.8 cm. If

a slip is detected, move to step 4.

(3) The time-differenced combination ∆GF
(1)
L1,L2,L5 is tested against a threshold of 1.7 cm. If a

slip is detected, move to step 4.

(4) When a slip is detected, first its approximate magnitude is estimated as ∆zk = round(Yk/λk).

At this point, the residual slip magnitude is assumed to be between ±2 cycles.

(5) Similar to the TurboEdit algorithm, the remaining joint cycle slip amplitude ∆z is then

chosen to minimize the residual in a set of time-differenced phase combinations. In par-

ticular, the algorithm searches over the joint slip amplitudes for the one that minimizes

|∆GFL1,L2|+ |∆GFL1,L5|.



64

Figure 3.8: Using detrended phase and signal intensity, shows consecutive canonical fades on L2
and L5 signals, as well as a canonical fade on the L1 signal. The first fade in L5 coincides with a
jump in GIF combination value of 0.25, indicating a positive full-cycle transition, while its second
fade shows a downward half-cycle transition. The L2 signal shows two canonical fades in the same
downward direction.

(6) The following pairs of joint amplitudes cannot be resolved by the two combinations in Step

5: {(−2,−2,−2), (−2,−1, 1)}, {(−2,−1,−2), (2, 2, 1)}, {(2, 1, 2), (−2,−2,−1)}, {(2, 2, 2), (−2,−1,−1)}.

Therefore, if the estimated amplitude lies in one of these pairs, the sixth and final combi-

nation GF
(2)
L1,L2,L5 is used to distinguish between the two outcomes. Specifically, the joint

amplitude from the corresponding pair that minimizes |∆GF
(2)
L1,L2,L5| is chosen.

3.4.2 Analysis

Figure 3.12 shows the residuals ∆Yi along with the ±4σ thresholds. Additionally, residuals

corresponding to cycle slips in the truth reference are encircled. There is a high false-detection rate

for the test on ∆Yi, i = 1, 2, 3. Notably, during manual cycle slip adjustment presented in the last

section, all identified slips were of 1 cycle in amplitude, though there were consecutive slips over a
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Figure 3.9: Using detrended phase and signal intensity, shows consecutive fades for L2 and L5
signals. The GIF combination show a jump in average value of around 0.50 before versus after the
fade, indicating two full-cycle transitions in the L5 signal. The half-cycle transition behavior on
the L2 signal is consistently downward while the full-cycle transition behavior of the L5 signal is
consistently upward.

few seconds that would appear as multiple-cycle slips in lower-rate data. However, for 1 Hz data,

this means that all detected cycle slips in our manual truth reference are considered as small slips.

This further implies that no cycle slips should have been detected when using these combinations

that include code phase observables, and yet 112 slips for L1, 143 for L2, and 153 for L5 were

detected using the standard thresholds. After accounting for the cycle slip occurrence from the

truth reference, this corresponds to false detection rates of 91, 79, and 60 percent, respectively.

There is clearly increased noise due to ionosphere variability and diffraction. While the

thresholds could be adjusted to account for ionosphere variability and diffraction fluctuations, this

would mean that if there were any larger slips some of them may be missed during detection using

code phase. Additionally, it is interesting to note that it is not just diffraction effects on carrier

phase that are causing increased noise in these observables, but that there is also a large increase
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Figure 3.10: Using detrended phase and signal intensity, shows consecutive deep fades mainly for
the L2 and L5 signals. The first fade coincides with canonical upward half-cycle transition of the
L2 signal. After accounting for its noise-induced cycle-slip, the L5 signal also shows a canonical
downward half-cycle transition. For the second fade, the L2 signal shows a downward full-cycle
transition with a corresponding change in average GIF combination value, while the L5 signal shows
a canonical upward half-cycle transition.

in fluctuations and errors in the code phase measurements. This can be seen more clearly in Figure

3.13, which shows detrended GF combinations of dual-frequency code phase pairs. In this case, we

are unsure of the actual origin of increased code phase fluctuations and whether they are directly a

result of diffraction effects on the signal or some receiver processing artifact such as carrier-based

smoothing of the code phase measurements. In either case, the increased code phase noise is clearly

associated with the ionosphere diffraction.

The next stage of detection considers ∆GIFL1,L2,L5 and ∆GF
(1)
L1,L2,L5, which are shown in

Figure 3.14 along with their ±4σ thresholds. Additionally, residuals corresponding to jumps in

the manual truth reference are encircled, similar to Figure 3.12. It is interesting to note how

different slip combinations tend to lie along certain subspaces of the joint ∆GIFL1,L2,L5,∆GF
(1)
L1,L2,L5

residual. This hints at more optimal testing procedures for these different slip combinations, as
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Figure 3.11: Shows examples of L1/L2 and L1/L5 ionosphere-free combinations and the L1/L2/L5
geometry-ionosphere free combination using 100 Hz carrier phase measurements. Top and bottom
panels show the combinations before and after manual cycle slip correction.

discussed in [81] or [3]. We will explore this idea more in Chapter 4. For this method, a cycle

slip is detected if the threshold is exceeded for either ∆GIFL1,L2,L5 or ∆GF
(1)
L1,L2,L5. This detection

scheme achieved 100 percent detection rate for epochs containing cycle slips in the truth reference.

However, similar to the issues faced during large slip detection, we again see large false-detection

rates. This method determined that there were cycle slips at 1216 epochs, thus yielding a false-

detection rate of 91 percent. This false detection rate is reduced when neglecting epochs where

estimated slip amplitudes are all zero, which we discuss next. Even still, such high rates of false

detection are inefficient, especially for when it comes to algorithms that use detections to reset

carrier ambiguities.

In the last step, slip amplitudes are estimated using the three different GF phase combina-

tions. Because these combinations use carrier phase only, they should normally be precise enough

to reliably estimate the cycle slip amplitudes on all three signals with high confidence. For the case
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Figure 3.12: The residuals of ∆Yi, i = 1, 2, 3, along with circles indicating the occurrence of an
actual cycle slip in the manual truth reference for the corresponding signal (L1= 1, L2= 2, L5= 3).
Dashed lines indicate slip detection thresholds, and overall we see many missed detections and false
alarms for these combination residuals.

of ionosphere scintillation, however, the ionosphere variation and diffraction noise will especially

impact these combinations, and so we expect poor estimation results. Figure 3.15 shows the slip es-

timated along with slip amplitudes from the truth reference. Overall, 594 of the epochs that tested

positive for cycle slips resulted in an estimate of no slip on all three signals. The false-detection

rate for epochs containing cycle slips goes down to 44 percent if we discount their occurrences.

While there are many epochs with ±2 cycle amplitude slip estimates, they are much less numerous

than the ±1 cycle slip amplitudes. Their occurrence also correlates fairly well with the slip occur-

rence from the truth reference. Careful inspection of the slip amplitudes shows that often +1 or
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Figure 3.13: Detrended GF combinations of the L1/L2, L1/L5, and L2/L5 code phase observables,
revealing a substantial increase in code phase noise and fluctuations during the scintillation event.

−1 cycle slips are estimated simultaneously on all three frequencies. In fact, this was the case for

499 epochs, or nearly 89 percent of the detected jump epochs with non-zero slip amplitudes. The

authors in [20] acknowledge the relative insensitivity of GF combinations to simultaneous slips in

the same direction on all three signals. Indeed, this may be the most challenging aspect of small

slip detection during ionosphere diffraction.

3.5 Cycle Slip Mitigation Performance: Filtering Algorithm

Work from [85] presents a Kalman filter algorithm to mitigate cycle slip occurrences for

signals reflected off water surfaces. The state-space algorithm adapts its gain based on fluctuations

in signal carrier-to-noise density ratio C/N0 while estimating the occurrence of integer-cycle jumps

due to cycle slips. Both reflected and scintillating signals exhibit interference and deep fading due

to scattered signals, and as such it is natural to apply this algorithm (with some modification) to

scintillation signals and consider its performance. Here we develop and assess an adaptation of the

algorithm from [85], which we originally presented in [12], to apply to triple-frequency scintillation

data. In the next section, we describe the algorithm. Then we assess its performance when applied

to the Hong Kong dataset. Overall, we will find this algorithm has better performance than the
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Figure 3.14: Residuals ∆GIFL1,L2,L5 plotted against ∆GF
(1)
L1,L2,L5 along with their ±4σ thresholds

(dashed lines). Residuals corresponding to actual slips in the manual truth reference are encircled,
similar to Figure 3.12
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Figure 3.15: Estimated cycle slip amplitudes at each epoch for the method outlined in [20] as well
as the amplitudes from the truth reference (shown with circles).
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De Lacy method presented in the last section, but it still produces many incorrect slip amplitude

estimates.

3.5.1 Algorithm Description

Following the development in [85], we consider a state-space formulation for filtering the

phase measurements in order to mitigate the impact of cycle slips. We collect the geodetically

detrended phase for various signals into a measurement vector y:

y(ti) =

[

Φ1(ti) . . . Φk(ti)

]T

(3.1)

We consider a state vector x consisting of the filtered phase residuals Φ̄fi along with their rate

estimates ∇Φ̄fi :

x(ti) =

[

Φ̄1(ti) . . . Φ̄K(ti) ∇Φ̄1(ti) . . . ∇Φ̄K(ti)

]T

(3.2)

With these definitions for y and x, we construct the measurement model:

y(ti) = Hx(ti) + b(ti) + v(ti) (3.3)

where H is given by

H =















1 . . . 0 0 . . . 0

. . .
...

...

0 . . . 1 0 . . . 0















(3.4)

and b(ti) =

[

λ1z1(ti) . . . λKzK(ti)

]T

is an estimate of the bias due to cycle slips with λfi

as the wavelength corresponding to the i-th signal. We also assume the measurement noise

v(ti) ∼ N (0,R(ti)) with covariance matrixR(ti) = diag(σ2
1(ti), . . . , σ

2
K(ti)). Here the measurement

variances are adjusted based on signal C/N0:

σ2
i (ti) =

1

2T · C/N0,i(ti)

(

1 +
1

2T · C/N0,i(ti)

)

(3.5)

where C/N0 is estimated as

C/N0(ti) =
|δs(ti)|2
σ2
N,fT

(3.6)
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This is assuming we have access to the complex correlation outputs δs (as introduced in Section

1.2.1 of Chapter 1) from our receiver. The nominal noise variance σ2
N can be estimated from the

amplitude variance of δs(ti) during ideal conditions that occur either before or after scintillation

or multipath occurrence.

The discrete-time state dynamics model is given by:

x(tk+1) = Fx(ti) +w(ti) (3.7)

where we have the discrete-time transition matrix:

F =





































1 . . . 0 T . . . 0

. . .
...

. . .

0 . . . 1 0 . . . T

0 . . . 0 1 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1





































(3.8)

and where w(ti) ∼ N (0,Q). Our adapted dynamics model leads to a slightly different discrete-time

process noise covariance Q than that in [85]. We express it using auxiliary matrices QΦ and QG,I :

QΦ = diag
(

σ2
Φ1
, . . . σ2

ΦM

)

(3.9)

QG,I =















σ2
G + β1β1σ

2
I . . . σ2

G + β1βMσ2
I

...
. . .

...

σ2
G + βMβ1σ

2
I . . . σ2

G + βMβMσ2
I















(3.10)

Q =







TQΦ + T 3

3 QG,I
T 2

2 QG,I

T 2

2 QG,I TQG,I






(3.11)

The parameters σ2
Φi
, σ2

G , and σ2
I are the values for the power spectral densities of the respective

white-noise processes. The noise associated with σ2
Φi

accounts for unmodeled and uncorrelated

errors amongst the different signals, while the noise associated with σ2
G , and σ2

I come from random

variations in the unmodeled non-dispersive and refractive ionosphere components that are present
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in all signals. The covariance matrix Q must be tuned to achieve the best possible cycle slip

mitigation. If its values are too large, the filter will be too forgiving to large phase variations

and will not be able to distinguish cycle slips. If its values are too small, the filter may become

overconfident and diverge. We performed a grid search of various combinations of values between

0.00001 to 2 and selected those that produce the best performance for the Hong Kong dataset in

the sense that it yielded the smallest number of slips in the resulting measurements (i.e. smallest

number of missed slips plus added slips). For the results presented in this the next section, we use

values of σ2
Φi

= 0.0001, σ2
G = 0.00001, and σ2

I = 0.00005.

Having established the measurement and state dynamics models for our system, the remain-

der of the algorithm follows mostly standard Kalman filter procedure. The one exception is the

estimation of the bias sequence b(ti), which is done using the propagated state x−(ti) and mea-

surements y(ti) as:

b(ti) = argminb′ ||y(ti)−Hx−(ti)− b′|| (3.12)

Again, the values of b are restricted to an integer number of wavelengths. The estimated bias b(ti)

is then subtracted from the measurement residual when updating x.

Otherwise, a state estimation covariance P(t) is propagated via:

P−(ti+1) = FP+(ti)F
T +Q (3.13)

and the remaining update steps follow:

K(ti) = P−(ti)H
T
(

HP−(ti)H
T +R(ti)

)−1
(3.14)

x+(ti) = x−(ti) +K(ti)(y(ti)−Hx−(ti)− b(ti)) (3.15)

P+(ti) = (I−K(ti)H)P−(ti) (3.16)

3.5.2 Assessment

We apply the filtering algorithm to the Hong Kong dataset after decimating our measurements

to 20 Hz. We obtain estimates of the slip bias sequences z(tk) for each signal. These are plotted
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Figure 3.16: Comparison of truth reference of cycle slip bias sequence versus sequence estimated
during the filtering process for L1, L2, and L5 signals (offset for clarity). There are 15, 63, and 78
slips in the truth reference and 26, 89, and 90 jumps in the filter estimate for the L1, L2, and L5
signals respectively. Of these, the filter estimated 8, 35, and 36 of the true jumps correctly.
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Figure 3.17: Comparison of IF and GIF combinations of the carrier phase estimates from the Hong
Kong dataset before and after applying the filtering method.
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in Figure 3.16 along with the bias sequences for the truth reference. The discrepancy between the

true and estimated bias sequences can be due to cycle slips that the filter fails to remove or that

the filter erroneously adds into its output. In this case, for the L1, L2, and L5 signals there are 15,

63, and 78 slips in the truth reference and 22, 89, and 90 slips in the filter estimate, respectively.

Of these, the filter estimated 8, 35, and 42 of the true slips correctly and erroneously added 14, 54,

and 48slips. Note then that for this dataset the filter adds more slips than it effectively mitigates,

which raises some doubt as to its usefulness. However, some of these added slips may be due to

rapid consecutive slips that were not included in the truth reference. For instance, between 43500 to

44000 seconds in Figure 3.16, all three phase bias estimates show occurrences where the estimated

bias jumps and then almost immediately returns to its previous value. Due to the way we manually

identified slips over a window of observations, rapid consecutive slips that did not result in a net

bias were not always identified in the truth reference. Therefore, we argue that the number of slips

added by the filter is moderately less than the reported number. After counting up the number of

rapid consecutive (i.e. less than 1 second apart) slips and removing them from the total, we arrive

at 8, 40, and 21 added slips.

An additional way to assess the removal of cycle slips is by observing the IF and GIF carrier

phase combinations. Note again that since the non-dispersive phase components were removed, the

IF combination should be mostly flat, as should the GIF combination. Figure 3.17 shows the IF

(top panel) and GIF (bottom panel) combinations before and after applying the filtering algorithm.

While there are some new jumps in the filtered IF and GIF combinations when compared to the raw

versions due to added cycle slips, our qualitative assessment is that the phase combinations after

filtering appear more flat overall. In particular, jumps in the GIF combination between 44500 and

45000 seconds have been significantly reduced. There are a couple beneficial qualities of the filtered

output that we observe through these linear combinations: 1) the filtered phase is less noisy, and

2) many consecutive cycle slip occurrences have been removed by the filter. This second point can

be seen particularly by observing the GIF combination, e.g. around 43800 seconds. The removal of

these rapid consecutive cycle slips may be beneficial to window-based cycle slip detection methods
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that may otherwise struggle to deal with multiple slips occurring within one detection window.

Otherwise, the fact that falsely added more slips than it correctly mitigated clearly indicates the

need for a better algorithm.

Overall, when we consider the performance of this algorithm, it makes sense that it is only

able to mitigate some of the slip occurrences in the scintillation measurements. The filter is designed

to “filter out” cycle slips by reducing its gain when the signal amplitude fades. As such, any cycle

slips due to phase transitions that occur during deep signal fades are likely to be correctly filtered

out and estimated by the algorithm. On the other hand, in the last chapter we saw how strong

scintillation contains many phase transitions with shallow fading amplitudes. Cycle slips due to

these phase transitions will not be as effectively filtered out by the algorithm. In actuality, the

performance of this algorithm on a given dataset is highly dependent upon the tuning of its process

noise. Smaller process noise generally leads to filtering of more slips, but if it is too small then the

algorithm will start introducing slips in order to accommodate variations in the actual signal phase

components. Recall that we optimized the tuning to achieve the best performance for this particular

dataset in terms of total cycle slips present in the filtered measurements. Even with the optimal

tuning we saw this effect of added slips in the filtering results. Moreover, because the algorithm is

sequential, there is no way for it to recognize if the phase deviations it observes are actually part of

the phase component dynamics (e.g. the refractive ionosphere phase) or if they correspond to actual

phase transitions. This is particularly the case when phase transitions occur over a longer duration

or has a shallow fading amplitude, as we just discussed. Our main takeaway from this assessment

is this: while the principles of filtering out cycle slips using an adaptive algorithm like the one

described here make sense, ultimately one needs a full window of measurements surrounding a slip

to adequately assess its occurrence. This will be a key point that motivates our work in Chapter 4

and Chapter 5.
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3.6 Summary and Discussion

In this work, we analyzed the occurrence of GNSS cycle slips associated with signal fading.

In particular, we looked at two datasets containing strong diffractive ionosphere scintillation. In

both datasets, jumps in the IF and GIF combinations clearly indicated the presence of cycle slips.

For the first dataset from Ascension Island, we analyzed various examples of canonical fades. We

showed how signal intensity and jumps in various linear combinations of phase observables allow

for identifying cycle slip occurrence. We applied this analysis to the second dataset from Hong

Kong in order to estimate a truth reference for cycle slip occurrence. A representative result of

our correction is shown in Figure 3.11, where any jumps in the IF and GIF combinations are

essentially eliminated. Then we used this truth reference to assess the performance of two cycle

slip mitigation algorithms. The first was the De Lacy algorithm: the single-epoch time-differenced

cycle slip mitigation algorithm for triple-frequency signals that is described in [20]. Although the

algorithm showed a 100 percent detection rate, large false-detection rates seem to be a consistent

problem at each stage of the algorithm. Based on the detection results from Figure 3.14, we cannot

reduce this false detection rate very much without introducing missed detections. The second

algorithm was an adapted version of the filtering method from [85]. This algorithm showed better

results than those from [20], but still ended up introducing more cycle slips than it accurately

corrected, despite having chosen an optimal tuning of the algorithm’s process noise covariance. We

argue that the added slips in this case are due in large part to phase transitions with extended or

shallow fading that can occur during strong scintillation or multipath, as we discussed in the last

chapter.

Observing the difference residuals of the various linear combinations used in the De Lacy

algorithm provided some insight into the several challenges that ionosphere diffraction presents

to traditional methods of cycle slip mitigation: 1) increased code phase errors/noise, 2) increased

carrier phase noise/modelling errors due to diffractive fluctuations, and 3) the rapid succession of

multiple cycle slips. The first of these issues, increased code phase noise, is problematic because
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it somewhat hinders the computational benefit of addressing large cycle slips using code phase

measurements. In this case, increased code phase noise contributes to large false-detection rates

that reduces the utility of code phase for large slip detection. The second issue is perhaps an

even larger contributor to the standard algorithm’s false-detection rates. Ionosphere diffraction is

associated with canonical fading and rapid phase fluctuations that can behave similarly regardless

of whether a phase transition (cycle slip) actually occurs. In turn, it becomes uncertain whether

these fast phase changes that show up in the residuals ∆GIFL1,L2,L5 and ∆GF
(1)
L1,L2,L5 correspond

to actual cycle slips. Similarly, we discussed how the adaptive filtering algorithm struggles to

discriminate between actual phase component variations and the variations associated with phase

transitions or cycle slips, as evidenced by its addition of multiple slips in the filtered results. Indeed,

some sort of averaging is needed in order to reduce the impact of diffractive fluctuations and other

unmodeled effects. Toward the end of Chapter 1, we discussed how window-based detection as a

promising technique. However, the occurrence of several cycle slips in rapid succession can be a

problem for window-based methods that usually assume the occurrence of only one cycle slip in

a given window. It at least requires more careful consideration before being applied to mitigation

of diffraction-induced cycle slips, including careful assessment of what measurement duration and

sampling rate are necessary to correctly estimate slips. This will be a topic we explore in Chapter

4.



Chapter 4

Probabilistic Modeling of Cycle Slip Detection and Estimation

4.1 Introduction

In Chapter 1, we discussed several approaches to cycle slip mitigation. These types of cycle

slip mitigation algorithms that test for outliers in time-differenced phase combinations have been

successful under normal signal conditions. However, as we discussed in the last chapter, when

it comes to more challenging conditions, uncertainty in the variation of signal phase components

can cause most cycle slip algorithms to fail. The authors of [2] first discussed the particularly

difficult problem of dealing with cycle slips during ionosphere plasma bubble events when phase

measurements contain multiple cycle slips and unpredictable variations due to changes in ionosphere

total electron content (TEC). Along with the authors in [45], [101], and [65], they emphasize

the utility of IF phase combinations and careful estimation of non-dispersive phase components

when it comes to detecting cycle slips in these scenarios. However, as noted in [3], even with

careful estimation of non-dispersive components it may still be impossible to effectively estimate

slip occurrences in 1 Hz dual-frequency measurements when the ionosphere variability is severe.

Our analysis of cycle slips associated with phase transitions in the last chapter suggests that high-

rate measurements over an extended window are actually necessary to reliably correct for cycle

slips under the most challenging conditions.

In this chapter, we aim to bring together all our available carrier phase measurements into a

general probabilistic framework for estimating cycle slips. In doing so we highlight the fundamen-

tal similarities between cycle slip estimation and ambiguity resolution as mixed-integer inference
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problems, and we frame the cycle slip problem as a trade-off between estimation fidelity and com-

putational burden. An important aspect of this work is the quantification of how much information

is actually necessary to adequately resolve cycle slips. We show that high-rate (>20 Hz) mea-

surements over a window of at least 16 seconds is necessary for estimating slips during ionosphere

scintillation. Although false estimations can still occur, this resolution of data substantially reduces

their probability.

This chapter is divided into five remaining sections. In Section 4.2 we introduce a state-space

model for cycle slip estimation for an arbitrary number of signals, measurement sampling rate, and

window duration. In Section 4.3, we discuss modeling of the dispersive and non-dipsersive phase

components as Gaussian processes, as well as ways for modeling the impact of noise. In Section 4.4,

we discuss the cycle slip problem from a probabilistic perspective and derive the expression for the

posterior distribution of cycle slip amplitudes given our measurements. In Section 4.5 we present

results of characterizing the failure rates for slip amplitude estimation under a variety of harsh

signal conditions and for different measurement rates and window durations. Finally, in Section

4.6 we summarize the results from this chapter.

4.2 System Model

In this chapter, we use the carrier phase measurement model that we introduced in Equation

1.5 from Chapter 1. Many approaches to cycle slip mitigation include code phase measurements

in their formulation, e.g. the method we analyzed at the end of Chapter 2. However, because

they are orders of magnitude more noisy than carrier phase, code phase measurements make little

contribution towards estimation of small slip amplitudes, especially when there is any sort of

uncertainty in non-dispersive or ionosphere phase components. Therefore, to simplify our analysis,

we only consider carrier phase measurements in this work. However, in principle, the system model

we present here can incorporate code phase measurements.

Here we describe the full set of measurement and state variables relevant to the cycle slip

problem. We can vectorize our phase measurements for K signals transmitted from one satellite at
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a time epoch t:

y(t) =

[

Φ1(t) · · · ΦK(t)

]T

where each Φk is modeled according to Equation 1.5. We denote a state vector consisting of the

non-dispersive and refractive ionosphere phase components along with the fractional phase bias for

each signal:

x(t) =

[

G(t) I(t) B1 . . . BK
]T

We collect the integer-cycle bias components into a separate vector:

z(t) =

[

z1(t) · · · zK(t)

]T

Then we can write the following equation modeling measurements at a single time epoch:

y(t) = A1x(t) +B1z(t) + ǫ(t) (4.1)

where

A1 =















1 β1 1

...
...

. . .

1 βK 1















, B1 =















λ1

. . .

λK















(4.2)

and where ǫ(t) = [ǫ1(t), · · · , ǫk(t)]
T is comprised of noise terms that we assume to be independent

and normally distributed with zero-mean and variances σ2
k. Note that if we want to estimate

half-cycle instead of integer-cycle slips, we can change the entries in B1 to be half-wavelengths.

We extend this model to consider a window of measurement and state terms at a series of

Nt times t = [t1, · · · , tNt ]
T , and adopt the notation Φk(t) = [Φk(t1), · · · ,Φk(tNt)]

T (likewise for

G, I, etc.). We express our full system model over multiple time epochs as:

y(t) = Ax(t) + B̄z(t) + ǫ(t) (4.3)
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where we have

A =





























1 β1

...
...

1 βK















⊗ INt IK ⊗ 1Nt















, B̄ = B1 ⊗ INt , (4.4)

and where IN is the N ×N identity matrix, 1N is a length N vector of all ones, and ⊗ denotes the

Kronecker product. As an example, the structure of the matrix A is illustrated in Figure 4.1a.

When it comes to addressing cycle slips, what we are actually interested in is the change in

integer phase bias z(t). To accommodate this, let t′ = [t′1, · · · , t′M ]T be a vector of times at which

slips, with amplitudes given by ∆zk(t
′), may potentially occur in our model. We define:

zk(t) = S∆zk(t
′) (4.5)

where ∆zk(t
′) (which we call the cycle slip amplitude sequence) is analogous to the discrete deriva-

tive of zk(t) and S is analogous to a discrete integral, having entries

Si,j =



















1 if ti ≥ t′j

0 otherwise

(4.6)

We then use this matrix to construct:

B = B1 ⊗ S (4.7)

As an example, Figure 4.1b depicts a hypothetical structure ofB for triple-frequency measurements.

Incorporating B and ∆z into Equation 4.3 gives us our final model equation:

y(t) = Ax(t) +B∆z(t′) + ǫ(t) (4.8)

Up until this point we have explicitly referred to the times at which a quantity is evaluated

using the vectors t and t′. The purpose of this is to emphasize how y and ∆z are generally evaluated

at different sets of times. For simplicity of notation, in the remainder of the chapter we will often

drop the (t) and instead use just a single symbol to refer to a quantity evaluated at all applicable

time epochs; e.g. we use y instead of y(t). The intent is to make things easier to read, and the

actual dimensions of the objects should hopefully be clear from context.
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Figure 4.1: Illustrates the hypothetical structure of the various matrices relevant to a system model
for triple-frequency signals. Panels a and b show the A and B matrices, respectively, from Equation
4.8. Panels c and d show the covariance matrices Qx from Equation 4.15 and Qy from Equation
4.23.

4.3 Distributions of G, I, and ǫ

In order to effectively estimate the occurrence of cycle slips, it is important to carefully model

the behavior of the non-dispersive and ionosphere phase components. In this work, we assume the

time series for G(t) and I(t) can be adequately modeled as zero-mean Gaussian processes (GP).

That is, any sampling of their time series at a discrete set of points t is assumed to be drawn

from an appropriate joint normal distribution. So, for the vectors representing non-dispersive and

ionosphere phase time series, we have:

p(G) = N (G;0,QG) (4.9)

p(I) = N (I;0,QI) (4.10)

Here we use p(·) to denote the probability distribution for the random variable corresponding to

its argument. We also denote the expression for the normal density with mean µ and covariance Q

evaluated at v ∈ R
N as:

N (v;µ,Q) = |2πQ|− 1

2 exp

[

−1

2
(v − µ)T Q−1 (v − µ)

]

(4.11)
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In addition to being GPs, we assume the phase components are time-stationary processes

defined by their autocovariance kernels, which we express as:

qG(τ) = E[G(t)G(t+ τ)] (4.12)

qI(τ) = E[I(t)I(t+ τ)] (4.13)

Here E denotes expectation.

In other works on cycle slip mitigation, trends in these components have been modeled as

linear [50], polynomial [21], or as autoregressive processes [98]. Compared to these approaches,

GPs offer more flexible modeling of phase component behavior. Depending on the choice of auto-

covariance kernel, they can represent a variety of interpolation approaches, including those we just

mentioned as well as splines and Fourier modes [46], [34]. Moreover, GP models can deal with miss-

ing or irregularly-sampled data [74], which can be a common occurrence for GNSS signals under

harsh conditions. However, this flexibility tends to come at a computational cost. Fortunately, this

cost can be reduced by taking advantage of the Toeplitz structure (i.e. constant along diagonal) of

time-stationary covariance matrices, which allows us to efficiently compute matrix-vector products

using the Fast Fourier Transform [75].

There are several standard options for parameterized autocovariance kernels. The exponential

kernel corresponds to continuous but non-differentiable processes while the squared exponential

kernel corresponds to processes that are infinitely differentiable. Realizations of these types of

processes are often either too rough or too smooth to represent realistic data. The Matérn kernel

with parameter ν generalizes these two kernels and provides a middle ground. It is equal to the

exponential kernel at ν = 1/2 and converges to the squared-exponential kernel as ν → ∞. It is

given by:

k(τ) = σ2 2
1−ν

Γ(ν)

(√
2ν

τ

ρ

)ν

Kν

(√
2ν

τ

ρ

)

(4.14)

where Γ denotes the Gamma function, Kν is the modified Bessel function of the second kind, σ2

controls variance, and ρ is a scale parameter that controls the rate of probable fluctuations. For this

work, we have heuristically chosen to use the Matérn kernel with parameter ν = 3/2 to represent
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both non-dispersive and refractive ionosphere phase components. Typically the autocovariances

can be obtained from their process’ corresponding power spectral densities (PSDs). However, we

want to show that our model is generally applicable, and we do not have good estimates for the

PSDs of the phase components for all the scenarios we consider in Chapter 5. From our experience,

the Matérn (ν = 3/2) kernel achieves a good balance between long-term “memory” of the process

trends while still allowing for small short-term fluctuations.

In addition to these models for G(t) and I(t), we assume that the fractional biases are drawn

from independent Gaussian distributions with variance given by σ2
B, i.e. Bk ∼ N (0, σ2

B). Then the

combined state x can be considered as one big zero-mean Gaussian process:

p(x) = N (x;0,Qx) (4.15)

where Qx = blockdiag
(

QG , QI , σ
2
B, . . . , σ

2
B

)

. As an example, Figure 4.1c illustrates the hypothet-

ical structure of Qx.

4.3.1 Noise Models for Harsh Conditions

In addition to the state variables in x, we take the measurement errors ǫ(t) to be zero-mean

and normally distributed:

p(ǫ) = N (ǫ;0,Qǫ) (4.16)

There are various types of noise that can impact our signal including thermal noise, oscillator jitter,

receiver platform vibrations, and unmodeled errors such as ionosphere diffraction fluctuations. In

this work, we will only consider the impacts of thermal noise and unmodeled errors (specifically

those due to ionosphere diffraction), although the impacts of these other types of noise can be

inferred from our results. In general, thermal noise will be important to consider for weak signal

reflections or low-elevation satellites, whereas the impact of unmodeled random phase fluctuations

will be most important for signals experiencing any amount of scintillation or scattering from struc-

tures in the atmosphere. Other types of noise, like jitter or vibrations, likely have a comparatively
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small impact (c.f. [86]). How these different types of noise manifest in our measurement model

depends on the receiver system response, its output bandwidth, and how measurement downsam-

pling or compression (if any) is performed. We will again make a simplifying assumption that the

noise bandwidth is equal to 1/T where T is the sampling interval of our measurements.

In Section 2.2.2, we introduced the thermal noise process that defines η as circular complex

white noise and how the power of this noise with respect to our signal is measured by C/N0. Usually

we can approximate the resulting noise process in our phase measurements as real-valued discrete

white noise and with variance (in units of cycles-squared) given by:

σ2
thermal =

1

2C/N0T

(

1 +
1

2C/N0T

)

(4.17)

However, this approximation does not work at low C/N0 or fast sampling rates. In particular, it

breaks down when the signal-to-noise ratio is roughly less than 1. At a bandwidth of 10 Hz, this

corresponds to a C/N0 of SNR× BW = 10 dB-Hz, which is very low. Meanwhile, cycle slips tend

to arise due to noise in phase unwrapping when the SNR reaches below 2.5, which corresponds

to a C/N0 of 25 dB-Hz at 10 Hz bandwidth. This is also very low C/N0, but we still see it for

weak reflection (like the GNSS-R example from Section 1.4.1 in Chapter 1), very low elevation or

partially obstructed satellites, and during deep signal fading due to multipath or interference.

When it comes to diffraction-based noise processes, we can no longer necessarily consider the

noise process to be white. Consider the top two panels of Figure 4.2, which show power spectral

densities (PSD) for ionosphere diffraction error, which we obtain by averaging periodograms of the

diffraction error from our ionosphere scintillation simulations. The left panel shows spectra for

different scintillation strengths (as indicated by S4) while the right panels shows the spectra for the

same scintillation strength but with different decorrelation times (indicated by τ). There is a break

in the spectrum just below 1 Hz, corresponding to the characteristic fluctuations of scintillation

at around this frequency. Notice that there is a strong dependence of spectrum amplitude on

scintillation strength. Meanwhile, the value of τ is related to the frequency of the break in the

spectrum, but has little effect on the overall amplitude of the noise. Because of this, we consider
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scintillation strength as measured by S4 to be the primary factor that determines the level of

diffraction-induced phase noise.

While we saw in Chapter 2 how both thermal noise and diffraction compound to create cycle

slips, when it comes to modeling phase noise usually one or the other is dominant. To show this,

in the bottom panel of Figure 4.2 we plot the phase noise variance versus measurement bandwidth

due to ionosphere diffraction for 3 different scintillation strengths, each of which we obtain by

integrating the corresponding PSDs from zero up to the measurement sampling frequency. We

also plot the phase variance due to thermal noise (dashed black line) for a C/N0 of 20 and 25

dB-Hz according to Equation 4.17. Under our assumptions, we see that for strong scintillation the

thermal noise variance will not exceed the diffraction noise variance, even for measurements/noise

bandwidth at 100 Hz. For moderately strong scintillation (S4 = 0.6) thermal noise can surpass

diffraction noise variance at around 25 Hz, while for weak scintillation the diffraction-induced phase

noise is weak and the thermal noise becomes dominant at only 5 Hz. Additionally, note how the

diffraction noise variance is approximately constant for measurement bandwidth past the break

frequency (around 0.5-1 Hz). Meanwhile, the thermal noise variance is highly dependent upon the

measurement bandwidth. This means that when we go to model phase noise, the measurement

sampling rate / bandwidth is very important when dealing with low-diffraction low-C/N0 scenarios

where thermal noise dominates. On the other hand, when diffraction noise is dominant, sampling

rate will not be an important factor in determining phase noise variance above 1 Hz.

Based on this assessment, we can model σ2
ǫ as:

σ2
ǫ = σ2

diffr + σ2
thermal (4.18)

where σ2
thermal is obtained as in Equation 4.17 and σ2

diffr is obtained by integrating the appropriate

PSD estimates as in Figure 4.2. The related work in [73] considers a similar but more intricate

model for phase noise variance that accounts for PLL bandwidth and oscillator jitter. They also

adjust the thermal noise variance to account for scintillation-induced fading. These more realistic

noise models could prove useful when it comes to improving application to real data or if noise
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mis-modeling turns out to be a limiting factor. We will stick to our simple model in Equation 4.18

for the analysis we perform in this chapter.

One caveat worth mentioning is the correlation between diffraction fluctuations for signals

at multiple frequencies. This model assumes uncorrelated noise on different signals, which is only

somewhat true for the case for ionosphere scintillation [72]. A large portion of diffractive ionosphere

fluctuations are correlated in a way that resembles the refractive ionosphere effect [17]. Similar

correlations are likely present in the diffraction due to troposphere scintillation. Ultimately, how

we model noise is highly application specific. Our model aims to be both powerful and general,

and we will only consider the simple noise model introduced in Equation 4.16. This model will

also be sufficient and effective for the detection and estimation approach we introduce in Chapter

5, although some benefit may come from more specific noise modeling under different scenarios,

which is a promising topic for future investigation.

4.3.2 Fixing Model Hyperparameters

The phase component covariances Qx will be determined by the parameters σ2
G , ρG , σ

2
I , ρI ,

and σ2
B while Qǫ is determined by the parameter σ2

ǫ . Finding an appropriate covariance parame-

terization is an important aspect of the proposed cycle slip mitigation technique. If the covariance

is too small then we underfit the data and risk many false alarms; if the covariance size is too big

then we will overfit the data and risk missed detections. 1 In general, the covariances QG , QI ,

and Qǫ will depend on the data at hand, and there are various approaches to model selection and

hyperparameter optimization given that data [89].

One way to choose the model parameters is to simply hand-tune them. This is the approach

we take when applying our algorithm to the ocean reflection and mountaintop RO datasets in

Chapter 5 Section 5.7.2, since for those cases we do not have a larger set of data with which to

validate our choices. For cases where the noise variance is mostly due to thermal noise, we can set σ2
ǫ

1 The one exception is σ2

B; this parameter is relatively less important, and simply needs to be chosen large enough
to account for the initial bias in the phase measurements.
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Figure 4.2: PSDs for ionosphere diffraction (top two panels) and corresponding phase noise vari-
ances for different bandwidth (bottom panel). Bandwidth is assumed equal to 1/T for sampling
interval T .

using Equation 4.17. We can look at the behavior of “cycle-slip-free” parts of the signal phase and

phase combinations in order to determine reasonable values for σ2
G , ρG , σ

2
I , and ρI . Alternatively,

when choosing model hyperparameters for scintillation measurements, we have at our disposal

realistic simulations using the phase screen model that we introduced in Section 2.2.1 of Chapter

2. In this case, we can obtain our parameter values by performing a grid search over σ2
I , ρI , and σ2

ǫ

in order to find the set of values that best explains the simulated measurements. In Appendix B,

we discuss this process in more detail. Diffraction will be the dominant contribution to ǫ, and so

another option for setting σ2
ǫ is to base its value on the diffraction noise PSDs that we discussed in

the last section. In actual signals, it is difficult to completely separate the diffractive and refractive

phase fluctuations. This means there is some flexibility in how the model hyperparameters are

tuned. If the refractive component is specified to be more smooth, we need to account for more
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noise by increasing σ2
ǫ . On the contrary, we can allow the refractive component to fluctuate more by

decreasing ρI , and this in turn allows us to reduce the size of σ2
ǫ . That is why, in general, it is best

to choose these parameters simultaneously using our realistic scintillation simulations. Meanwhile,

we choose σ2
G , ρG , and σ2

B heuristically. For instance, parameters for G can be chosen by observing

the amplitude and scale of fluctuations in the IF combinations for real data, or they can be tuned

to optimize some performance outcomes.

4.4 Probabilistic Estimation

Now we use our established system model from previous sections to present cycle slip es-

timation from a probabilistic perspective. Using the system model from Equation 4.8 and noise

distribution from Equation 4.16, we obtain the following likelihood distribution for y given x and

∆z:

p(y|x,∆z) = N (y;Ax+B∆z,Qǫ) (4.19)

We also have the prior distribution on x from Equation 4.15. As for the discrete-valued ∆z, we

can express an arbitrary prior as:

p(∆z) =

Nχ
∑

i=1

w−
i δ(∆z−∆zi) (4.20)

Here, each w−
i is a weight corresponding to a particular cycle slip sequence ∆zi that can be thought

of as a point on the integer lattice: ZK·Nt′ . For practical reasons, we assume p(∆z) is only nonzero

on some admissible subset this lattice, which we denote χ. This set, which has Nχ elements, should

initially be large enough to contain any possible cycle slip sequence. Similar to [22] and [29], we

can assume independence between x and ∆z so that:

p(x,∆z) = p(x)p(∆z) (4.21)

Using these likelihood and prior distributions we can express the joint distribution of p(y,x,∆z),

and through orthogonal decomposition we can derive the expression for p(y|∆z). Similar deriva-

tions in the context of GNSS ambiguity resolution are mentioned in [80] and [29]. The resulting
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steps can be summarized as:

p(y,x,∆z) = p(y|x,∆z)p(x)p(∆z)

= N (y;Ax+B∆z,Qǫ)

· N (x;0,Qx) p(∆z)

= N
(

x;µx|y,∆z,Qx|y

)

· N
(

y;µy|∆z,Qy

)

p(∆z)

= p(x|y,∆z)p(y|∆z)p(∆z) (4.22)

where

Qy = AQxA
T +Qǫ (4.23)

Qx|y = Qx −QxA
TQ−1

y AQx (4.24)

µx|y,∆z = Qx|yA
TQ−1

ǫ (y −B∆z) (4.25)

µy|∆z = B∆z (4.26)

As an example, the structure of the matrix Qy for triple-frequency signals is illustrated in Figure

4.1d.

It follows from Bayes’ rule that:

p(∆z|y) = p(y|∆z)p(∆z)

p(y)

=
p(y|∆z)p(∆z)

∑

i p(y|∆zi)p(∆zi)
(4.27)

Using Equation 4.20, we can rewrite Equation 4.27 as:

p(∆z|y) =
∑

i

w+
i δ(∆z−∆zi) (4.28)

where

w+
i =

w−
i N (y;B∆zi,Qy)

∑

j w
−
j N (y;B∆zj ,Qy)

(4.29)
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What Equation 4.29 essentially tells us is that the posterior probability of a particular cycle slip

sequence is proportional to its prior time a “modified” likelihood that takes into account the modeled

smoothness of phase components through Qy.

4.4.1 Integer Least Squares

Here we draw a connection between the posterior derived in the previous section and the

integer least-squares (ILS) solution, which is an approach to optimizing discrete-valued variables

that has commonly been used to resolve GNSS carrier phase ambiguities [78]. This connection has

previously been pointed out in [22] and [80]. In ILS, we first relax the integer constraint on ∆z,

and refer to the new float-valued slip amplitude sequence as ∆ẑ. Then, assuming an improper flat

prior p(∆ẑ) ∝ 1, we obtain the following posterior distribution:

p (∆ẑ | y) = N (∆ẑ;µ∆ẑ,Q∆ẑ) (4.30)

Q∆ẑ =
(

BTQ−1
y B

)−1
(4.31)

µ∆ẑ = Q∆ẑB
TQ−1

y y (4.32)

The approach of ILS is to find the integer-valued argument that maximizes the expression

for the density in Equation 4.30. A visual interpretation of this solution is the integer-valued point

that lies closest to the float least-squares estimate µ∆ẑ|y under the metric induced by Q∆ẑ. Figure

4.3a illustrates the “pull-in” regions that define which float amplitude estimates are mapped to

which integer grid points. For active ionosphere conditions the pull-in regions are stretched out

along a particular direction due to the uncertainty in the ionosphere phase components. When

there is no correlated uncertainty in the phase components, these pull-in regions will just look like

square boxes surrounding each grid point.

The connection between the ILS solution and the posterior from Equation 4.27 stems from

the realization that the following expressions are proportional (with respect to argument ∆zi):

N (y;B∆zi,Qy) ∝ N (∆zi;µ∆ẑ,Q∆ẑ) (4.33)
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so we can rewrite Equation 4.29 as:

w+
i =

w−
i N (∆zi;µ∆ẑ,Q∆ẑ)

∑Nχ

j=1w
−
i N (∆zj ;µ∆ẑ,Q∆ẑ)

(4.34)

We expound on the result in Equation 4.33 in Appendix C. The result of Equation 4.34 shows

us that when the prior distribution for ∆z is flat, i.e. w−
i ∝ 1, the argument ∆zi that maximizes

the above expression is equal to the ILS estimate. In other words, when the prior on ∆z is non-

informative, the maximum posterior (MAP) and ILS solutions coincide. The distribution describing

the posterior in this case is sometimes called the “discrete Gaussian” or “discrete normal” and can

be denoted:

DN (∆zi;µ∆ẑ,Q∆ẑ) =
1

S
exp

[

(∆zi;µ∆ẑ)
T
Q−1

∆ẑ
(∆zi;µ∆ẑ)

]

(4.35)

where S is the normalizing constant.

ILS has been used to frame the problem of carrier phase ambiguity resolution for a long time,

and it is no surprise that estimation of cycle slips shares the same underlying problem structure.

Inference on these types of problems is NP-hard in the general case, which means computing or

maximizing the posterior involves a brute-force search over the space of ∆z. There are a number

of methods to help make the search process more efficient. As we mentioned in Chapter 1, many

ambiguity resolution and cycle slip algorithms apply the least-squares ambiguity decorrelation and

adjustment (LAMBDA) when estimating carrier ambiguities or slip amplitudes. The decorrelation

aspect in LAMBDA actually refers to a particular implementation of a lattice reduction algorithm.

These types of algorithms can make searching over the integer solutions more efficient by finding

new bases of the integer lattice that are approximately orthogonal under the metric induced by

Q∆z. The second aspect of the LAMBDA approach to ILS involves a search to find the best integer

parameter vector in the least-squares sense. We discuss this aspect in more detail in Section 5.5

of Chapter 5 where we introduce a modified search algorithm designed for the windowed cycle slip

problem.
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4.5 Simulated Cycle Slip Estimation Performance

With our system model established, we now try to answer an elusive but very important

question: how well can we actually estimate cycle slip occurrences under harsh conditions? And

moreover, how much data is actually necessary to do so reliably? Specifically, it is useful to

know for what duration and at what sampling rate we need measurements in order to achieve

high probability of correctly estimating cycle slip amplitudes. Similar questions regarding cycle

slip estimation performance in the presence of uncertainty in dispersive and non-dispersive phase

components or measurement noise have been addressed for single-epoch methods in [3] and [90].

However, no study has addressed this question as it relates to a window of observations at different

sampling rates.

We will address four different scenarios corresponding to the model parameters described in

Table 4.1. The first three scenarios correspond to mild, medium, and strong scintillation levels at

a high C/N0 of 50 dB-Hz. The fourth scenario is mild scintillation with a low C/N0 of 25 dB-Hz.

Here scintillation strength is completely determined by S4 and we keep τ constant. Note that the

parameters for σ2
G and ρG are also kept constant and correspond to very smooth, well-behaved

non-dispersive phase components. We obtain the values for σ2
ǫ by adding the phase noise variances

for thermal and diffraction-induced noises as described in Section 4.3.1. Note in particular that this

means the noise variance is bandwidth dependent and will change for different sampling frequencies.

The value of σ2
ǫ at 10 Hz sampling rate is shown in the table.

In order to demonstrate model strengths under these different scenarios, we first consider the

case of estimating the amplitude of a single cycle slip in the middle of a window of observations;

i.e. the vector t′ from Equation 4.5 contains a single element, which is the time at the middle of the

window. We assume measurements modeled according to Equation 4.19 and for model parameters

corresponding to the different scenarios in 4.1. Figure 4.3a depicts pull-in regions that arise when

using a 10-second window of 5 Hz dual-frequency measurements assuming model parameters from

scenarios 1 and 3. Each region is colored according to the probability of identifying the corre-
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Units Scenario 1 Scenario 2 Scenario 3 Scenario 4

S4 0.3 0.6 0.9 0.3
τ s 0.6 0.6 0.6 0.6

C/N0 dB-Hz 50.0 50.0 50.0 25.0
σ2
G m2 0.1 0.1 0.1 0.1

ρG s 40.0 40.0 40.0 40.0
σ2
I m2 1.0 1.0 1.0 1.0

ρI s 60.0 9.0 5.0 60.0
σ2
ǫ cyc2 @ 10 Hz 0.13 0.20 0.47 0.26

Table 4.1: Characteristics and hyperparameter values for different scenarios corresponding to a
variety of signal conditions.

sponding slip amplitude, given that no slip has occurred. As expected in this situation, the correct

cell (0,0), which is outlined in dark gray, has the highest probability of being identified. However,

certain slip amplitudes like (1,0) show a non-negligible probability of identification (denoted Pid).

Assuming that our measurement model is accurate, summing up the probabilities of these other

cells (or equivalently taking 1− Pid) produces the probability of false identification (denoted Pfa).

We consider Pfa as a measure for how well or how poorly a particular model can estimate cycle slip

occurrence.

For each of the four scenarios, we consider models for single-, dual-, and triple-frequency

signals over a range of measurement sampling rates and window durations. Figure 4.4 shows the

Pfa computed for the different model structures and for each signal scenario. In general, we see

decreased Pfa for higher sampling rates, longer window durations, and more signal frequencies. It is

clear that the biggest factor determining model performance is the presence of diffraction-induced

phase noise. For single-frequency signals the situation is particularly dire, with false identification

probabilities staying above 30% for the case with the strongest scintillation. For dual- and triple-

frequency signals, the false identification probability can still be brought down to roughly 10-20%

when using at least a 16-second window of 20-50 Hz measurements. For low-C/N0 conditions,

we also note that around 16-20 second windows were necessary to achieve the best performance.

Meanwhile, increasing sampling rate improved performance under all scintillation conditions. Under

all the scenarios, it was not possible to reliably estimate slips in the 0.5 or 0.2 Hz measurements.
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Figure 4.3: Pull-in regions and corresponding probabilities for quiet (left panel) and disturbed
(right panel) signal conditions. Each region is colored according to the probability of the float
estimate µ∆ẑ lying in that region, given that no slip has actually occurred.

4.6 Summary

In this chapter, we established a general approach to probabilistic inference on the occurrence

of cycle slips in GNSS phase measurements. Along the way, we introduced Gaussian process models

for phase component time series and noted their improved flexibility when compared to other

models. We also discussed the contributions of both thermal and diffraction-induced noise to the

phase measurement variance, which we argue are the two most relevant noise sources under harsh

conditions. We derived expressions for the posterior distribution of cycle slip amplitudes, and we

showed how the MAP estimate is the same as the ILS solution when slip priors are uniform. Finally,

we used our model to simulate and assess cycle slip estimation performance under various signal

conditions, the results of which were shown in Figure 4.4.

There are many different scenarios for signal conditions that will correspond to varying ca-

pabilities when it comes to estimating cycle slip occurrences, and the results from Figure 4.4 only

cover a selection of representative examples. Similar analyses can be carried out for different sets

of signals and signal conditions. As for the case of diffractive ionosphere scintillation, we see that

in order to achieve reasonably low probabilities of false identification we should use at least a 16
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Figure 4.4: Probability of false slip amplitude identification under different signal conditions and for
different model structures. Each row corresponds to signal conditions with model hyperparameters
chosen according to Table 4.1. The columns show results for models using single-, dual- and triple-
frequency measurements.
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seconds of measurements sampled at 20 Hz or faster. This will be a motivating premise driving our

development of cycle slip detection and estimation methods in the next chapter.



Chapter 5

Novel Batch Algorithm for Cycle Slip Detection and Estimation

In chapters 2 and 3, we saw how harsh signal conditions, ionosphere diffraction specifically,

produce cycle slips at a rate of tens of slips per minute and how they are challenging to mitigate.

As a concrete example, Figure 5.1 shows a case in the Hong Kong data where nearly a dozen

slips occur over the span of 10-20 seconds, with occurrences highlighted in the vertical shaded

regions. Meanwhile, our analysis from the last chapter indicates that we need at least that much

measurement data to reliably estimate the slip occurrence. This poses an interesting question of how

to deal with the multitude of cycle slips that occur under harsh signal conditions. In particular, one

might initially consider the potential for cycle slips to occur between any two measurement epochs.

In this case, when considering a window of high-rate measurement and slip epochs the problem

becomes very high-dimensional and the time-adjacent float estimates will be highly correlated (e.g.

consider the difference between estimating a slip occurring at 1.0 seconds versus 1.1 seconds). Even

worse, when numerous cycle slips occur in sequence, as is the case under harsh signal conditions,

the pairwise dependence between time-adjacent slip amplitudes results in a model that is coupled

over the entire estimation window. The various authors that have addressed window-based cycle

slip detection (e.g. [21], [14] [49]) all make restrictive assumptions about the number of slips that

can occur in a given window. Given the random and chaotic behavior that can occur under harsh

signal conditions, such rigid assumptions are ultimately a hindrance to effective mitigation.

In this chapter, we introduce a batch estimation algorithm that uses a window of measure-

ments at arbitrary sampling rate for any number of carrier frequencies. In particular, we propose
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Figure 5.1: Example of cycle slips occurring in the Hong Kong scintillation dataset for GPS PRN 24
on 2013-10-03. The top panel shows signal C/N0, the middle panel shows detrended carrier phase
measurements, and the bottom panel shows the triple-frequency IF and GIF phase combinations.
The shaded regions indicate the occurrences of cycle slips.

that a better way to formulate the window-based cycle slip estimation is by using an appropri-

ate prior on ∆z that is not actually uniform but instead reflects the sparsity of slip occurrence.

Our characterization of slip occurrences as Poisson processes in Chapter 2 provides good empirical

justification for this interpretation. As we demonstrate in this chapter, introduction of a sparse

prior naturally leads to a way of detecting cycle slip occurrences over a window of observations. By

first detecting slip occurrences we can effectively restrict the support of the posterior to only the

detected epochs, thereby reducing the dimension and making the inference problem more tractable.

Once we have our model with reduced dimension, we can search for the most probable cycle slip

amplitude sequence. For this last step, we introduce new and adapted approaches to finding the

optimal integer parameters in the high-dimensional ILS problem associated with these detected

slip occurrences. Overall, this approach can be summarized in these four steps: 1) We compute a

float estimate of ∆z that incorporates a sparsity-inducing prior. 2) We detect slips as maxima in
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norm of this sparse float estimate. 3) We compute a reduced system model using the detected slips

from the previous step. 4) We search for the best integer candidates in the reduced model to find

the MAP cycle slip amplitude sequence. We then use the MAP estimate to correct for cycle slip

occurrences.

The results of applying our algorithm to simulated and real scintillation data sets indicate

that it is effective, however it also has some downsides. This method is computationally demanding,

especially when compared to cycle slip algorithms that are used in practice. It is meant to be a

thorough approach to cycle slip inference that is appropriate for post-processing or that can be

used as a benchmark for design of other algorithms. Further work will be necessary to see how its

principles adapt to sequential and near real-time processing. Also, we focus on use of simulations

of ionosphere scintillation in order to tune our algorithm, and the parameters we obtain may or

may not be suitable for use in other harsh signal scenarios. Nevertheless, the principles behind the

algorithm that we introduce are applicable to a wide variety of contexts, and we demonstrate its

effectiveness for different harsh signal conditions in our results.

This remainder of this chapter is divided into 4 sections. Section 5.1 briefly discusses the

model we introduced in Chapter 4 and how we can tune its hyperparameters for the Hong Kong

scintillation dataset, which is the primary focus when evaluating our results at the end of the

chapter. Then, in Section 5.2 we describe our method for obtaining the sparse float estimate of

cycle slips, followed by Section 5.3 that describes the detection of cycle slips occurrences using

the sparse float estimate. In Section 5.4 we briefly describe the reduced estimation model that is

obtained after detecting the slips. In Section 5.5 we provide background on the LAMBDA search

algorithm for determining integer ILS parameters, and then we introduce two new approaches to

search solutions to our high dimensional ILS problem corresponding to the reduced estimation

model. We provide a summary of the algorithm in Section 5.6 and present results of applying it to

simulated and real cycle slip datasets in Section 5.7. Finally, we provide a summary and discussion

in Section 5.8.



104
Units Window 1 Window 2

S4 0.86 0.71
τ s 0.53 0.7 3

C/N0 dB-Hz 48.00 49.00
σ2
G m2 0.001 0.001

ρG s 60.00 60.00
σ2
I m2 0.80 0.60

ρI s 7.00 9.00
σ2
ǫ cycles2 0.20 0.16

Table 5.1: Scintillation window characteristics and hyperparameter values

5.1 Hyperparameter Tuning: Hong Kong Dataset

When demonstrating our results in real measurements, we will mainly focus on two windows

of the Hong Kong scintillation dataset. The top two panels of Figure 5.2 show the C/N0 and

detrended phase measurements for that dataset, with the two windows of interest depicted by the

shaded regions. The bottom two panels show the scintillation index S4 and decorrelation time τ ,

respectively, which are related to the cycle slip occurrence rates as we discussed in Chapter 2. Table

5.1 lists the average S4, τ , and baseline C/N0 for the L1 signal that describe the signal conditions for

the two windows in Figure 5.2. As discussed in Section 4.3.2 of Chapter 4, we can use measurement

simulations in order to tune our model hyperparameters. As such, we use the S4 and τ values

from Table 5.1 when generating the simulations that we use to choose our hyperparameters. We

describe this process along with additional considerations in Appendix B. The parameters we use

corresponding to the two scintillation scenarios we assess in this paper are also provided in Table

5.1.

5.2 Sparse Detection

Our objective in this section is to detect cycle slips. Put another way, we would like to find a

set of times at which there is a non-negligible probability of a slip having occurred. Moreover, we

want to do this while making full use of our measurements y and taking advantage of our knowledge

of the sparsity of cycle slip occurrence. To do so, we first introduce a new variable ∆z̃, called the
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Figure 5.2: Hong Kong scintillation dataset that was introduced in Section 1.4.0.2. The first and
second panels show the C/N0 and geodetic-detrended phase for the three signals. The third and
fourth panels show the scintillation indices S4 and decorrelation times τ , respectively, for each of
the signals. The shaded areas indicate the two time windows of interest.
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sparse float estimate of ∆z. For this variable, we consider a sparsity-inducing prior that is given

by the product of Laplace distributions:

p (∆z̃) =
∏

k∈K

∏

t′∈t′

λ

2
exp

(

−λ|∆z̃k(t
′)|
)

(5.1)

The parameter λ (not to be confused with the carrier wavelengths λk) is the inverse scale parameter

of the Laplace distribution. It plays an important role in the L1-norm optimization that arises when

maximizing the posterior corresponding to this prior. We consider how this prior augments the

posterior distribution:

p (∆z̃|y) ∝ p (y|∆z̃) p(∆z̃) (5.2)

From this we see that the log of the posterior can be expressed:

log p(∆z̃|y) = −L(∆z̃) + C (5.3)

where C is constant with respect to ∆z̃ and we have the following objective function:

L(∆z̃) =
1

2
||y −B∆z̃||2Qy

+ λ||∆z̃||1 (5.4)

with

||y −B∆z̃||2Qy
= (y −B∆z̃)T Q−1

y (y −B∆z̃) (5.5)

||∆z̃||1 =
∑

k∈K

∑

t′∈t′

|zk(t′)| (5.6)

The maximum a-posteriori (MAP) estimate of the float cycle slip amplitudes is given by:

∆z̃ = argmin
∆z∈RKN

t′

{L(∆z)} (5.7)

Our detection strategy is to use the MAP estimate of the float slip amplitudes as an indicator of

the occurrence of slips.

5.2.1 MM Algorithm

The objective function in Equation 5.4 corresponds to a quadratic optimization problem

with L1-norm regularization. This type of problem appears in various contexts, for example in
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basis pursuit denoising and problems involving LASSO (least absolute shrinkage and selection op-

erator). Our particular formulation is closely related to the problem of total variation denoising

with simultaneous low-pass filtering (LPF/TVD), which is introduced in [69]. In that work, the

authors use majorizer-minimization (MM) to solve the problem of extracting a sparse signal com-

ponent from a 1D noisy signal with low-frequency trends. Here, we extend and adapt their MM

approach to solve Equation 5.7 for our case of a multidimensional time series containing multiple

sparse signal components.

The principle behind MM is to solve a sequence of optimization problems where the objective

functions are quadratic majorizers of L. A majorizer of the objective function L at a reference point

∆z̃i is a functionMi such thatMi(∆z̃i) = L(∆z̃i) andMi(∆z̃) ≥ L(∆z̃) ∀∆z̃. The solution of the

optimization problem corresponding to Mi is used as the reference point for the majorizer Mi+1

in the next iteration. The resulting sequence of solutions will converge to the global minimum of L

(so long as L is convex). This concept is illustrated for a hypothetical 1-dimensional optimization

problem in Figure 5.3.

We use the following majorizer of L:

Mi(∆z̃) =
1

2
||y −B∆z̃||2Qy

+
λ

2
∆z̃TΛ−1

i ∆z̃+
λ

2
||∆z̃i||1 (5.8)

where

Λi = diag(|∆z̃i|) (5.9)

The minimizer of Equation 5.8 is given by:

∆z̃i+1 =
(

BTQ−1
y B− λΛ−1

i

)−1
BTQ−1

y y (5.10)

As iterations progress, many entries in ∆z̃i approach zero and introduce numerical issues when

evaluating expressions containing Λ−1
i . To circumvent the issue, the Woodbury matrix inverse

identity can be used to obtain an equivalent expression in terms of Λi:

∆z̃i+1 = −
1

λ

[

Λi − ΛiB
TΓ−1

i BΛi

]

BTQ−1
y y (5.11)

Γi = λQy −BΛiB
T
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Figure 5.3: Illustrates the MM process for a hypothetical univariate minimization problem. The
black curve is the objective function, the gray curves are the series of quadratic majorizers, and
the blue lines illustrate how the values that minimize the majorizers progress towards finding the
minimum of the objective function.

To perform the algorithm, ∆z̃0 can be initialized as a sequence of all 1s. One then proceeds

to minimize the objective function in Equation 5.8 evaluated at ∆z̃0 by applying Equation 5.9

and solving Equation 5.11 to obtain ∆z̃1. This process is repeated until convergence or some set

number of iterations. The function MM in Algorithm 1 outlines this process. As a result of this

process, we obtain the sparse float amplitude estimate ∆z̃, an example of which can be seen in the

fourth panel of Figure 5.10 in Section 5.7.

5.3 Detection and Tuning Parameters

If our algorithm is properly tuned, the float estimate ∆z̃ at the end of the MM iterations will

be close to zero except at epochs where there is a non-negligible probability of cycle slip occurrence.

It is important to note that because ∆z̃ is a float estimate, it does not necessarily do a good job of

indicating which signals contain slips, especially when slip amplitudes are correlated. An example

of this can be seen in Figure 5.10 from Section 5.7.1, whose third and fourth panels show the slip

bias truth reference and ∆z̃, respectively. Any time there is actually a simultaneous slip in one

direction on the L2 and L5 signals, ∆z̃ shows a spike on the L1 signal in the opposite direction.

It makes sense that the optimal argument of a sparsity-inducing cost function would estimate one

slip on one signal rather than two slips on the two other signals. Nevertheless, it is clear that any

non-zero values in the float estimate correspond to slips in the actual measurements, and so we
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Algorithm 1 Majorizor Minimization for computing ∆z̃

1: function MM(y,Qy,B)
2: ⊲ For y ∈ R

KNt , Qy ∈ R
KNt×KNt , B ∈ R

Nt×Nt′

3: ∆z̃0 ← ones(Nt′)
4: for i← 1, . . . ,max iterations do
5: Λi ← diag(|∆ẑi|)
6: Γi ← λQy −BΛiB

T

7: ∆ẑi+1 ← − 1
λ

[

Λi − ΛiB
TΓ−1

i BΛi

]

BTQ−1
y y

8: ⊲ estimate is ∆z̃ from last iteration
9: return ∆z̃i

adopt the approach of detecting cycle slips as relative maxima in the norm of ∆z̃ evaluated at each

time epoch. We also note that MM is a multiplicative algorithm, and so while most of the values of

∆z̃ will be extremely close to zero, they will never equal zero. Thus we also introduce a detection

threshold adet to avoid detecting slips from spurious small fluctuations in ∆z̃. We denote the times

at which we detect slips as tdet, which can be expressed as:

tdet = {t ∈ t′ | ||∆z̃(t)||1 > adet and (5.12)

||∆z̃(t)||1 is local max.}

The performance of this detection scheme is dependent upon the choices of both λ and

adet. In the MM procedure, increasing the value of λ has the effect of promoting sparsity in

the result, i.e. making more entries closer to zero. In theory, the actual value of λ should be

related to the rate of cycle slip occurrence among all signals being considered. In the case of

ionosphere scintillation, since we have realistic simulations at our disposal, we choose both λ and

adet to optimize detection performance on simulated datasets. We performed 50 simulations of 5-

minute duration and estimated ∆z̃ using values of λ ranging from 15 to 100. We then detected slip

occurrences according to the procedures above using different values of adet. We consider a detection

to be correct if it falls within 0.2 seconds of an actual slip occurrence in the truth reference. This

allows us to calculate the number of missed detections and false alarms for the various values of λ

and adet. Figure 5.4 shows the results, with the missed detection and false alarm rates (averaged

over all simulations) plotted against the detection threshold. The various lightly-colored lines show
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how these curves change for different values of λ, and the colored dots represent the corresponding

crossover point of the false alarm and missed detection curves. The dark lines highlight the curves

corresponding to the value of λ that minimizes the crossover point. We use this as our criteria for

choosing the value of λ, since it optimizes the trade-off between detecting more slips and accruing

more false alarms.

With λ established, choosing the value of adet mainly becomes a trade-off between ensuring

that we detect all cycle slips and reducing the computational burden of approximating the posterior;

the more slips we detect, the more parameters we have to estimate in our reduced model. We found

that a threshold of 0.01 works well for all the scenarios we investigated, as it enables detection of

all consequential cycle slips while keeping the total algorithm runtime at a reasonable level. One

interpretation of this whole process is that the values of λ and adet are hyperparameters for the

sparse prior on ∆z̃ that is realized through this entire process of detection. Our validation of

these parameters is based on simulations, but it is conceivable that their values can be linked to

characteristics of the signals themselves. For instance, in Chapter 2 we determined how the rate of

cycle slip occurrence relates to signal conditions for the case of diffractive ionosphere scintillation.

It is conceivable that other relationships can be developed to quantify the rates of slip occurrence

in other scenarios (ocean reflection, troposphere scintillation, etc.), and that these slip rates can be

linked to the choice of λ. This will be an interesting topic for future investigation.

5.4 Reduced Model

Having established a method for detecting cycle slip occurrences, we can now form a new

system model that only admits slips at the times detected in the previous step. In particular, we

construct the matrix S from Equation 4.5 using t′ = tdet and create a reduced model matrix Bred

relating slips at these times to the measurements y. We then evaluate the mean and covariance

of the float posterior distribution from Equation 4.31. In the new model, Q∆ẑ is of dimensions

KNd ×KNd where Nd is the number of detected slips. Because of the sparse detection procedure,

Nd ≪ Nt′ and so the problem dimension has been significantly reduced. The first panel of Figure
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Figure 5.4: Shows the rate (in slips per minute) of false alarms and missed detections for a range
of values for the detection threshold adet and tuning parameter λ. The colored points indicate
crossover points of the false alarm and missed detection curves for the various values of λ. The
black lines indicate curves for the value of λ that minimizes the crossover point.

Figure 5.5: Examples of the covariance Q∆ẑ of the reduced model float estimate corresponding to
the real data from Window 2. The second and third panels show the covariance and precision (i.e.
inverse of the covariance) matrices for the permuted reduced model, where parameters are ordered
by slip epoch. Different cliques over the model parameters are indicated in the third panel.
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5.5 shows an example of Q∆ẑ in the reduced model for dual-frequency signals. There are four

nearly diagonal blocks corresponding to the auto and cross-covariances of the slip amplitudes on

the two signals. To make this covariance more diagonal, we apply a permutation P so that the

covariance terms corresponding to a particular epoch are adjacent, i.e. it converts it from a K ×K

matrix of Nd × Nd blocks to a Nd × Nd matrix of K × K blocks. Panel b shows the permuted

covariance matrix, which is now close to block-diagonal aside from a set of 2× 2 blocks just off the

main diagonal.

5.5 Search for ILS Solution

With our reduced model established, we are now ready to consider actually finding the best

amplitude sequence estimate. As we mentioned, this type of problem involves a discrete search

over potential candidates for the maximizer of Equation 4.28. We will assume the prior on cycle

slip amplitude sequences for the reduced model is non-informative so that our MAP estimate

corresponds to the ILS solution. Recall that, for a float estimate â and covariance Q, the ILS

problem can be expressed as:

ǎ = argmina∈ZN (a− â)T Q−1 (a− â) (5.13)

In our case, a = ∆z and Q = Q∆z, although we will use a and Q in this section for notational

simplicity and for consistency with other literature.

5.5.1 LAMBDA

To find the solution to Equation 5.13, we search for ǎ over a hyper-ellipsoidal region defined

by:

r(a) = (a− â)T Q−1 (a− â) ≤ Rsearch (5.14)

where r(a) is the objective function we are trying to minimize and Rsearch denotes the search radius.

We can then compare each a in this region to find ǎ. The LAMBDA algorithm prescribes an
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approach that makes this search as efficient as possible. Normally, it is broken down into two steps:

reduction and search. The first step is actually optional, but serves to make the search process more

efficient by finding a new basis for the integer lattice which approximately orthogonalizes Q−1. We

skip this step for reasons explained in Section 5.5.2. The main way that LAMBDA accomplishes

the second step is through the search-and-shrink algorithm, which is a method of enumerating

points close to â while simultaneously shrinking Rsearch, thereby reducing the number of points

we must search over. The algorithm has been carefully explained in [79], [19], and various other

publications. Here we go through the essential details, closely following the development provided

in the official LAMBDA documentation [25].

5.5.1.1 Sequential Conditional Fixing

To explain the search process, it is helpful to first describe a solution for a that is obtained by

sequentially fixing the individual components of a. This is also called the “bootstrapped” solution.

We begin with the LDLT decomposition of Q, where D is diagonal and L is lower triangular with

ones along its diagonal. Inserting this for Q in Equation 5.14 yields:

(a− â)T L−TD−1L−1 (a− â) ≤ Rsearch (5.15)

Next, define ā = a− L−1 (a− â) so that

L (ā− a) = a− â (5.16)

The entries of ā are the conditional float estimates of each component of a given its predecessors,

i.e.

āi = âi:1:i−1 = âi −
i−1
∑

j=1

(aj − āj)Li,j , 1 ≤ i ≤ N (5.17)

Here, âi:1:i−1 is the i-th component of â conditioned on the fixed values of the preceding components,

a1, . . . , ai−1. Note that Equation 5.17 can be obtained using forward substitution applied to the

system in Equation 5.16.
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Inserting Equation 5.16 into Equation 5.15 yields:

(a− ā)T D−1 (a− ā) ≤ Rsearch (5.18)

Since D−1 is diagonal, this can be written:

(a1 − ā1)
2

D1
+ · · ·+ (aN − āN )2

DN

≤ Rsearch (5.19)

We see that in order to minimize the LHS of Equation 5.19, a should in some sense be close to ā.

In particular, if we fix the first i− 1 coordinates of a, then we observe the following bound on ai:

(ai − āi)
2 ≤ Di



Rsearch −
i−1
∑

j=1

(aj − āj)
2

Dj



 (5.20)

We can obtain a somewhat decent solution by sequentially fixing a1 through aN to the values closest

to ā. That is, we first take a1 = round(ā1) = round(â1). Then we compute ā2 using Equation

5.17 and fix a2 = round(ā2). This process continues for ai, 3 ≤ i ≤ N . The resulting fixed value

of a is the “bootstrapped” solution (which we denote ab) that we mentioned earlier. Algorithm 2

shows how to obtain the bootstrapped solution given â and the L and D matrices from the LDLT

decomposition of Q.

Algorithm 2 Integer Bootstrapping

1: function BOOTSTRAP(L,D, â)
2: N ← length(â)
3: ā← zeros(N)
4: ab ← zeros(N)
5: a1 ← round(â1)
6: for i← 2, . . . N do

7: ai ← âi −
∑i−1

j=1(aj − āj)Li,j

8: return ab

5.5.1.2 Search Routine

Now that we have described sequential conditional fixing, we are ready to introduce the

search-and-shrink routine for finding the solutions of Equation 5.13. Note the use of the word

solutions, since technically there can be up to 2N minimizers of Equation 5.13. However, as noted
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in [78], this is essentially never the case in practice. Even still, the search method in LAMBDA

prescribes a way in which we can obtain the Ncand candidate solutions of a that are closest to â.

From these candidate solutions, we can evaluate and select our ILS solution.

At the beginning, we consider Rsearch =∞ and choose Ncand initial candidates. For our first

candidate we use the bootstrapped solution a(1) = ab. We then obtain Ncand − 1 other candidates

by keeping all their entries the same as ab except for the last component, which alternately switches

to the next closest integer to ābN , i.e.

a
(1)
N = abN

a
(2)
N = abN + 1

a
(3)
N = abN − 1

a
(4)
N = abN + 2

...

a
(2p)
N = abN + p

a
(2p+1)
N = abN − p

...

At this point, we have found Ncand solutions that are inside our search radius. We shrink

the search ellipsoid by setting Rsearch = min
{

r(a(i)) : 1 ≤ i ≤ Ncand

}

, which for this first case

becomes Rsearch = r(a(Ncand)). Next, the search continues starting from coordinate N−1, where we

take our new a to be our bootstrapped solution except now we change component N − 1 to be the

next closest integer to āN−1 and set aN = round(āN ). At this point, one of two things happens:

(1) If this new candidate anew satisfies r(anew) ≤ Rsearch, then we update our list of candidates

by replacing the one that has the largest r value with this new candidate. We also set

Rsearch = min
{

r(a(i)) : 1 ≤ i ≤ Ncand

}

. The search then continues by modifying anew at

component N .

(2) Otherwise, anew does not lie within the search ellipsoid, so we continue the search starting
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from component N − 2.

This process continues until all the components of a have been considered and no new candidates

lie within the search ellipsoid.

To illustrate this process, Figure 5.6 shows the candidates and search ellipsoids for the case

N = 2 dimensions and Ncand = 6. It starts with the bootstrapped candidate at (1, 0), which is

labeled 1, and then considers the next 5 closest integer coordinates for a2. Together, these form

our initial set of 6 candidates. The dashed blue line shows the Rsearch ellipse corresponding to this

initial set of candidates. From here, we take the bootstrapped solution (1, 0) and adjust a1 to

be the next closest integer, which in this case is 0. This point, (0, 0), is labeled 7 in the figure.

Since it lies within the search ellipse, we throw out candidate 6 and shrink Rsearch to correspond

to candidate 5, which now is the candidate with the largest distance to â. Since candidate 7 was a

success, move the search back up to the 2nd component, with its next best integer value being 1.

This new point, (0, 1), is labeled 8 in the figure. Since it also lies within the ellipsoid, we throw out

candidate 5, replace it with this new candidate, and shrink Rsearch to correspond to the distance of

candidate 4. The same thing happens with the next search candidate, which is labeled 9, and the

search ellipse is shrunk further. After adding point 9 to our candidate list, the next point we try

is 10, but this point is outside of the search ellipsoid, so it is discarded and the search moves back

down to the first component again. This time when we try a new coordinate for a1, the subsequent

conditionally fixed solution, which is labeled 11, lies outside of the search ellipsoid, and so no new

candidates can be found starting from the first coordinate. Since there are no new candidates and

we have started the search from each component of a, the process is finished and the candidates 1,

2, 3, 7, 8, and 9 form the 6 closest values of a to â.

5.5.2 Cliques

The search-and-shrink procedure is an exhaustive search for the ILS solution that can be

fairly time-consuming. For this reason, LAMBDA applies a decorrelating transformation to a

and Q before performing its search. Various lattice reduction methods have been successful in
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Figure 5.6: Illustrates the process of search and shrink, which seeks the best integer candidates
within a given ellipsoid of particular float solution.

handling problems with correlated ambiguities of multi-frequency signals for a fairly high number

of dimensions [40]. For an efficient search implementation, dimensions up to 50 can be searched in

less than a minute. For problems with small variance, such as ours, even without lattice reduction

we find that a search over up to 40 dimensions can be performed in less than a minute (on one 2.4

GHz processor). However any additional increase in problem dimension seems to quickly lead to

very long search times. For multi-frequency measurements and long windows of data containing

many cycle slips, our problem dimension can easily reach over 150 dimensions, making the standard

search-and-shrink routine impractical, even when using a decorrelating transform.

The high dimensionality of our problem would not be an issue if partitioned into completely

independent sets of variables, since then we could just split the problem into smaller problems.

Unfortunately, the consecutive occurrences of cycle slips that arise during harsh signal conditions

leads to widespread interdependence of slip amplitudes across the entire estimation window. This

interdependence manifests as the off-diagonal blocks in Q∆ẑ, which effectively couple the amplitude

estimates between adjacent slip epochs. The widespread interdependence that arises from this

coupling can be seen from the large off-diagonal entries of the float solution precision matrix Q−1
∆z,



118

an example of which is shown in the third panel of Figure 5.5.

Considering the problem from the perspective of probabilistic graphical models (PGM) offers

helpful insight on this problem. Such models represents variables (e.g. cycle slip amplitudes) as

nodes and their inter-dependencies (e.g. non-zero values in the float precision matrix) as edges.

[33] considers the ILS problem from the perspective of PGMs and suggests that such problems

typically have dependency graphs that are complete, i.e. all the variables being estimated are

interdependent. This is also somewhat true for our case of inferring the amplitudes of consecutive

cycle slips in a time series. Figure 5.7 illustrates the PGM corresponding to the cycle slip problem

and how marginalizing the Gaussian process priors ultimately results in an approximately complete

dependency graph. We say approximately because the interdependence between cycle slip amplitude

estimates does diminish over time, as we can see from the tapering of entries in the precision matrix

in Figure 5.5. In the context of PGMs, we describe this behavior using the concept of cliques. A

clique is a maximal set of interdependent nodes; that is, it is a subset of our slip amplitude estimates

each of which is interdependent with every other variable in the subset. Figure 5.8 illustrates a

hypothetical PGM corresponding to the cycle slip problem where the assumed maximal clique

size is 3. In reality, the size of cliques in an ILS model changes depending on the variables and

their interdependence. This concept is illustrated in the third panel of Figure 5.5, which shows

brackets along the main diagonal of the precision matrix that roughly indicate a few of the subsets

of interdependent variables. The concept of cliques is important in our two approaches to finding

the ILS solutions to our reduced model, which we discuss next.

5.5.3 Method 1: Search and Shrink Over Cliques

Our first approach to the ILS search for high-dimensional problems is essentially to apply

search-and-shrink to subsequent cliques of the ILS model. We call this method search-and-shrink

over cliques (SASOC) and the basic steps can be summarized as:

(1) Define the set of cliques over the model.
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Figure 5.7: Illustrates the probabilistic graph structure of the cycle slip problem before and after
marginalization of the phase components x. Nodes indicate sets of variables in the model and edges
imply conditional dependence between nodes. In this case, we show a complete graph for variables
z, indicating that all variables are interdependent.

Figure 5.8: Illustrates the concept of cliques in a PGM.

(2) Perform search-and-shrink for Ncand candidates over the first clique.

(3) Take the best candidate over the clique abest and fix each variables at the beginning of the

clique that is not in the subsequent clique: ǎi = abesti for each appropriate i.

(4) With those values fixed, continue with search-and-shrink over the subsequent clique.

(5) Repeat this process until we have searched the last clique, at which point we fix all remaining
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variables according to the best candidate.

We consider the fixed solution of this process to be our ILS estimate. When defining our set of

cliques, we can use the values of the precision matrix to choose maximal sets of interdependent

variables. The values of the precision matrix do not end up being exactly zero, and some threshold

on their magnitude would have to be used. Alternatively, for the way we actually implement the

algorithm, we can set some maximal clique size Nclique and assume that no clique for our model

exceeds this dimension. Larger Nclique captures more of the subtle variable interdependence (as

indicated by the values further off the main diagonal of the precision matrix) but also results in

a more computationally intensive search. In our implementation, we choose Nclique = 20 for a

good trade-off between search fidelity and computational speed. Our implementation of SASOC is

outlined in Algorithm 3.

5.5.4 Method 2: Approximate Support Using Marginals

While SASOC adapts the search-and-shrink algorithm to be feasible over our high-dimensional

problem, it is still somewhat inefficient since it performs a fresh search over an entire clique for

almost every variable in the model. As such, we propose another algorithm, which is to bound the

support of the joint posterior on cycle slip amplitude sequences using approximations of its marginal

distributions at each epoch. We call this algorithm Approximate Support Using Marginals (ASUM).

It is inspired by the work from [87]. For a continuous joint-normal random vector v with mean µ

and covariance Q, if we partition v into v1 and v2, then its joint distribution is bounded by the

product of its marginals:

p(v) = N (v;µ,Q) ≤ p(v1)p(v2) = N (v1;µ1,Q1)N (v2;µ2,Q2) (5.21)

From this we can say that the support of p(v) must coincide with the supports of both p(v1)

and p(v2). We can apply this concept when evaluating the posterior for ∆z, starting first with

the marginal distribution of slip amplitudes at individual epochs and then combining successive

groups of epochs. Since the variances are small, the marginal support is constrained and remains
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Algorithm 3 Find ILS solution using search-and-shrink over cliques

1: function SASOC(L,D, â, Nclique, Ncand)
2: N ← length(ẑ)
3: Rsearch ←∞
4: candidates← zeros(Ncand, N)
5: candidates dist2← zeros(Ncand)
6: count← 0
7: dist2← zeros(N)
8: ã← zeros(N)
9: ǎ← zeros(N)

10: step← zeros(N)
11: ã[0]← â[0]
12: ǎ[0]← round(ã[0])
13: ibase ← 0
14: done← False
15: while not done do

16: if dist2[i] < Rsearch then

17: if i < ibase +Nclique − 1 then

18: ⊲ if we we have not yet reached the end, keep recursively computing ã
19: i← i+ 1
20: ã[i]← â[i]− L[i, 0 : i](ã[0 : i]− ǎ[0 : i])
21: ǎ[i]← round(ã[i])
22: dist2[i]← dist2[i− 1] + (ã[i]− ǎ[i])2/D[i]
23: if ã[i]− ǎ[i] > 0 then

24: step[i]← 1
25: else

26: step[i]← −1
27: else

28: ⊲ if we reach the end, then store the found candidate and try next valid integer
29: candidates[imax, 0 : N ]← ǎ
30: candidates dist2[imax]← dist2[i]
31: imax ← argmax(candidates dist2)
32: Rsearch ← candidates dist2[imax]
33: ǎ[i]← ǎ[i] + step[i] ⊲ go to next valid integer
34: dist2[i]← dist2[i− 1] + (ã[i]− ǎ[i])2/D[i]
35: step[i]← −step[i]− sign(step[i])
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36: else

37: ⊲ exit or move down
38: if i← ibase then

39: if ibase +Nclique >= N then

40: done← True
41: else

42: ⊲ fix first clique variable using best candidate so far
43: ǎ← candidates[argmin(candidates dist2), 0 : N ]
44: ã[i]← â[i]− L[i, 0 : i](ã[0 : i]− ǎ[0 : i])
45: dist2[i]← (ã[i]− ǎ[i])2/D[i] + dist2[i− 1]
46: ⊲ move ibase up and reset candidate search for next clique
47: ibase ← ibase + 1
48: candidates dist2[0 : N ]←∞
49: Rsearch ←∞
50: imax ← argmax(candidates dist2)

51: else

52: ⊲ move down
53: i← i− 1
54: ǎ[i]← ǎ[i] + step[i]
55: step← −step[i]− sign(step[i])
56: dist2[i]← (ã[i]− ǎ[i])2/D[i] + dist2[i− 1]

57: return candidates, candidates dist2
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relatively small even as it exponentiates when we combine multiple slip epochs. We still have

to be careful though; the discrete Gaussian is a tricky distribution to work with. While the full

discrete distribution is exactly proportional to the full continuous distribution evaluated at the

lattice points, its marginals are in general not proportional to lattice-samplings of the continuous

marginals. Nevertheless, we have found empirically that the sampled continuous marginals still

provide a good enough approximation of the support of the actual discrete marginals. That is, if the

continuous marginal evaluated at a point is negligible, the discrete marginal will also be negligible.

If the value of the continuous marginal at a point is non-negligible, the discrete marginal at that

point may be non-negligible.

We must also be aware of how the size of the approximate marginal support grows as we

introduce more slip epochs. As we already mentioned, because the variances in the float posterior

are small we find the size of the marginal support at each epoch is small enough (around 1-4 points)

that the problem remains tractable over several slip epochs. For example, if we expect at most 4

non-negligible slip amplitudes per epoch and our computational resources are limited to evaluating

a distribution for around 1000 lattice points at a time, then we can combine around 5 epochs

(since 45 ≈ 1000). Eventually, depending on the structure of Q∆ẑ and the available computational

resources, as we continue to combine marginals evaluating the distribution will become infeasible.

At this point, we want different chains of approximate supports to be as independent as possible.

For this reason, we determine how to combine marginals by recursively partitioning our variables

according to their conditional independence.

To implement the ASUM algorithm, we first recursively partition the float posterior along

slip epochs to create a tree of maximally independent subsets of variables, where conditional inde-

pendence is assessed through the maximum absolute value of entries of the superdiagonal blocks

in the precision matrix Q−1
∆ẑ

. This process is outlined in the “partition” function from Algorithm

4. Once we partition the data down to individual slip epochs, we sample the continuous marginal

density for each slip epoch as an approximation to the actual discrete marginal. Let χ0 be the

grid of admissible points for a single slip epoch; e.g. if we again consider slip amplitudes between
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±4 cycles then χ0 = {−4,−3,−2,−1, 0, 1, 2, 3, 4}K . We approximate the integer-valued marginal

by evaluating each point in χ0 according to Equation 4.28 then normalizing by the sum of the

results. We select the Nkeep most probable points from χ0 according to their continuous marginal

probability. We keep track of those points as the approximate support of the marginal. For the

next iteration, we consider pairs of epochs with approximate supports χ1 and χ2 and we evaluate

Equation 4.28 for each point in χ1 × χ2. This process continues in the next iterations, eventually

expanding the marginal to include all slip epochs. At the end, the full distribution is evaluated over

the candidates from the full approximate support and the most probable candidate is chosen as our

solution. Algorithm 4 shows how this process can be implemented through a recursive function.

5.6 Method Summary and Computational Considerations

In summary, our approach to cycle slip estimation consists of four main steps: 1) Compute

the sparse float estimate, 2) detect slips, 3) compute reduced system model, 4) search for the best

integer candidates in the reduced ILS model. Under our stated assumptions, this estimate is equiv-

alent to the MAP estimate, and we use it to correct for cycle slip occurrences. These steps are

further outlined in Algorithm 5. Also, Figure 5.9 illustrates our entire process for addressing cycle

slip occurrence in the real scintillation data that we present in Section 5.7.2. This includes deter-

mination of appropriate covariance hyperparameters along with the detection of slip occurrences

and bounding/estimation of slip amplitudes. In addition, source code examples for implementing

and applying this cycle slip mitigation approach are provided at the SeNSe Lab GitHub page:

(https://github.com/cu-sense-lab/cycle-slip-estimation).

Before we dive into the results of applying this algorithm, there are a few remaining computa-

tional aspects of the approach that we should discuss. When searching for the ILS slip amplitudes

estimate, we proposed two methods. We discussed how the first method, SASOC, is an extension of

the traditional ILS search-and-shrink algorithm. In that sense, SASOC may be a more approach-

able to those familiar with the search-and-shrink approach. The runtime and fidelity of the SASOC

estimate depend on the maximum clique size Nclique, while for ASUM the performance depends on
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Algorithm 4 Recursively approximate support of ND (µ,Q) using continuous marginals

1: function Partition(µ, Q)
2: ⊲ Find separating variable corresponding to the superdiagonal block with the smallest value
3: ⊲ This can also be done using the precision matrix Q−1 instead of Q
4: N ← length(µ)
5: imin ← 0
6: min value←∞
7: for i← 1, . . . , N do

8: superdiagonal max← max(abs(Q[0 : i, i : N ]))
9: if superdiagonal max < min value then

10: min value← superdiagonal max
11: imin ← i

12: return µ1,Q1, µ2,Q2

13: function ASUM(µ,Q, χ0)
14: if size(Q)← K then

15: m(χ0)← normalize (N (χ0;µ,Q))
16: χblk ← {∆zii ∈ χ0 | m(∆zi) > threshold}
17: else

18: µ1,Q1, µ2,Q2 ← Partition(µ, Q)
19: χ1 ← ASUM(µ1, Q1)
20: χ2 ← ASUM(µ2, Q2)
21: χ3 ← χ1 × χ2

22: m(χ3)← normalize (N (χ3;µ,Q))
23: χblk ← {∆zi ∈ χ3 | m(∆zi) > N th

keep largest value of m(χ3)}
24: return χblk
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the maximum number of points Nkeep in the approximate marginal supports. For sufficiently large

Nclique and Nkeep we found that the SASOC and ASUM solutions were almost always identical. We

did find discrepancies when substantially increasing the estimation window size to 40 minutes (as

opposed to our the approximately 8-minute windows whose results we actually show) for the Hong

Kong scintillation dataset presented in Section 5.7.2. All the results we show in the next section

are for 500-second windows of data or less, and the SASOC and ASUM algorithms agree in their

found solutions when using Nclique = 18 or Nkeep = 100. Unfortunately, we are not able to provide

a rigorous proof regarding the estimate fidelity (i.e. does the found solution actually equal the ILS

estimate), but the agreement between the two algorithms suggests that both methods generally

work. More substantial proof of their fidelity comes from the results we present in the next section.

It is also worth noting that we did find that the ASUM algorithm outperformed SASOC in terms of

runtime. As an example, for the 8.5 minutes of 20 Hz triple-frequency scintillation data presented

in Section 5.7.2 we found that the ILS search takes between 40-45 seconds for SASOC but only

5-10 seconds for ASUM to run on one 2.4 GHz core.

A very important aspect of the approach, which we only briefly mentioned a few times in this

chapter and Chapter 4, is how we implement the mathematical operations in a computationally

efficient manner. First, we note that the only densely-evaluated matrix is Q∆ẑ. The operators A,

B, Bred, and Qǫ can all be efficiently applied in O(n) time and only require O(n) storage or less.

The operator Qx is block-Toeplitz and can be stored in O(n) space and applied in O(nlog(n)) time

using FFT-based methods. Therefore, the operator Qy can be applied in O(nlog(n)) by combining

A, Qx, and Qǫ operators. This is similarly true for the Γi operator from Equation 5.11. Inverses

of Qy and Γi can be applied using conjugate gradient descent, and the efficiency of this operation

will depend on the number of iterations needed for convergence. These gradient descent operations

and computation of Q∆ẑ are the computational bottlenecks for our approach. In general, runtime

will depend on the window size, measurement sampling rate, and the number of detected slips. As

an example, for the 8.5 minutes of 20 Hz triple-frequency scintillation data presented in Section

5.7.2 we found that the reduced model covariance calculation takes between 3-4 minutes to run
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on one 2.4 GHz core. Again, we emphasize that this algorithm is designed and intended for batch

post-processing. However, this runtime could be substantially improved with more focus on efficient

implementation, which will be an important topic of future work.

Algorithm 5 Demonstrates full cycle slip mitigation algorithm

1: ⊲ Step 1: compute sparse float estimate
2: ∆z̃← MM(y,Qy,B)
3:

4: ⊲ Step 2: detect slips
5: tdet ← {t ∈ t′ : ||∆z̃(t)||1 > adet}
6: ⊲ Step 3: compute reduced model
7: µP

∆ẑ ← Pµ∆ẑ

8: QP
∆ẑ ← PQ∆ẑP

T

9:

10: ⊲ Step 4-a: find best slip amplitude sequence over the approximated support
11: χ0 ← {−Np, . . . , Np}K ⊲ Np is the maximum slip amplitude under consideration
12: χapprox ← ASUM(µP

∆ẑ, Q
P
∆ẑ, χ0)

13: p(χapprox)← normalize
(

N
(

χapprox;µ
P
∆ẑ,Q

P
∆ẑ

))

14: ∆zMAP ← argmax(p(χapprox))
15:

16: ⊲ Step 4-b: alternatively, find best slip amplitude sequence using search-and-shrink over cliques
17: L,D← ldl(QP

∆ẑ)
18: candidates, candidates dist2← SASOC(L,D, â, Nclique, Ncand)
19: ibest ← argmin(candidates dist2)
20: ∆zMAP ← candidates[ibest]

5.7 Results

Having established a methodology for detecting slip occurrences, we now turn to evaluat-

ing its performance on both simulated and real GNSS datasets that are impacted by ionosphere

scintillation.

5.7.1 Simulated Data

We simulate realistic ionosphere scintillation measurements with parameters corresponding

to the S4, τ , and C/N0 of Window 1 from Table 5.1. Panels a and b from Figure 5.10 show the

C/N0 and phase for the simulated triple-frequency measurements. As is to be expected, we see

correlated fading of C/N0 and fluctuations in the phase measurements. The overall phase trend is
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Figure 5.9: Block diagram describing the inputs and processes involved in the cycle slip estimation
method developed in this paper.
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due to the ionosphere TEC, which for this case of simulated data corresponds to the model phase

screen. Panel c shows the diffraction error, which is obtained by subtracting the phase screen from

the phase measurements. The diffraction error contains both noise and cycle slips, and the dashed

black lines indicate the truth estimate of the slip bias sequence obtained by taking the TVD fit of

the diffraction error, which we denote ztrue. As is typical for scintillation of this magnitude, the L2

and L5 signals show many simultaneous cycle slips.

Looking closely at the correspondence between the diffraction error, we see it is sometimes

not so clear what constitutes a cycle slip in the truth reference. For instance, consider the shaded

region between 320-340 seconds (marked Region 6); there is a large fluctuation in the diffraction

error for the L5 signal and the truth reference indicates that the phase slips in one direction and

then slips back several seconds later. There is a similar but lesser fluctuation in the diffraction

error for the L2 signal, but the truth reference does not count them as cycle slips. While some

slips have an undeniable and lasting effect on the phase bias, perhaps these instances are better

interpreted as large fluctuations in the phase due to diffraction. In fact, these phenomena are the

main contribution to the high baseline rate of missed detections that we saw in Figure 5.4. The

takeaway here is that it is better to judge our cycle slip estimation results based on their similarity

with the truth reference over time rather than evaluating their correspondence for every single slip

occurrence.

Panels d and e show ∆z̃ and ž, i.e. the sparse float amplitudes and the MAP bias estimates,

respectively. Also, the dashed black lines in Panel d indicate the threshold used for detection. We

note how the simultaneous slips in the L2 and L5 signals are detected on the L1 signal in the float

estimate. The shaded region between 270-300 seconds (marked Region 5) shows one example of

this. Fortunately, as we see in the MAP estimate, the fixed amplitudes are correctly estimated as

occurring on L2 and L5, and not on L1. Comparing Panels c and e, we observe long-term agreement

between the truth reference and MAP estimate of the slip bias sequences; from beginning to end

they both show the same overall change in phase bias for each of the three signals. In general,

the MAP estimate shares the same slip amplitudes as the truth reference. One important case is
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between 170-180 seconds (marked Region 4) where the MAP estimate correctly shows a 2-cycle

slip in L5, demonstrating the algorithm’s ability to correctly deal with different slip magnitudes.

In addition to the overall agreement, this example demonstrates successful estimation of two of the

most difficult-to-detect slips that can occur for triple-frequency GPS signals. The first is a 1-cycle

slip on just the L1 signal, which occurs between 80-100 seconds (marked Region 2), and the second

is a simultaneous 1-cycle slip on all three signals, which occurs between 440-450 seconds (marked

region 7). These are normally the types of slips that other cycle slip algorithms struggle with, even

under moderate conditions, and correct estimation in this instance is a testament to the power of

using an extended window of high-rate measurements.

Panels f, g, and h show the IF, GIF, and GF phase combinations. In each panel, the gray

line depicts the combination obtained using the raw measurements while the colored line shows the

combination after correcting the measurements using the MAP cycle slip estimate. Additionally,

for the GF combination (which is scaled to be in TEC units), we show the model phase screen

(also scaled to TEC units) in the black dashed line. We see that the IF and GIF combinations

are mostly flat after the correction, whereas the raw combinations show many jumps. The GF

combination after correction agrees very well with the phase screen trend, except for one instance

between 40-70 seconds (marked Region 1). Interestingly, the MAP estimates of slip amplitudes at

these epochs are actually opposite of those in the truth reference. It is not clear what exactly causes

the algorithm to fail here, but it is worth pointing out that the corrected IF and GIF combinations

remain flat during this time, even with the erroneous slip amplitude estimates. More importantly,

the algorithm correctly identifies the broader trend in the phase, and the slips revert after a dozen

seconds for a net-zero change in cycle bias. There are only a couple other notable discrepancies

between the MAP estimate and truth reference. The first occurs with the L5 slips between 320-340

seconds (marked Region 6). As we argued earlier, these missed slips are more of an artifact from

generating the truth reference using the phase screen and are not a failure of the algorithm. The

other is between 115-130 seconds (marked Region 3) where, according to the truth reference, two

consecutive slips occur on the L2 and L5 signals with very short delay. Instead of on L2 and L5, the
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MAP estimate interprets these slips as occurring (in the opposite direction) on the L1 signal. This

discrepancy is most likely due to the proximity of the detections and the ambiguity of slips on the

L1 signal versus simultaneous slips on the L2 and L5 signals. Similar to the other discrepancies, it

is of little consequence to the overall agreement in the cycle bias sequences.

To supplement the analysis of this simulation example, we also analyze the cycle slip es-

timation performance for a batch of simulated measurements. First we ran 100 simulations of

scintillation measurements over a 5-minute window using scintillation parameters from Window 1.

We then applied the cycle slip estimation algorithm for each simulation run and computed the error

due to cycle slips both before and after correction using the MAP cycle slip estimate. For each of

these errors, we subtract off the mode of the cycle bias. This is because the overall phase bias is not

well-captured by the model we are considering, which is designed only to estimate cycle slips. We

also neglect any errors occurring within the first or last 10 seconds of the data window, as faulty

estimations during these times are more prevalent due to the lack of measurement context preceding

or following the slip detection. Figure 5.11 shows the distributions of these errors for each signal,

with the lighter and darker colors indicating the error before and after correction, respectively. The

errors before correction reach past ±5 cycles over the 5-minute window. Meanwhile, the errors

after correction are significantly reduced, showing no errors 90% of the time on L1, 85% of the

time on L2, and nearly 80% of the time on L5. Moreover, the errors are essentially confined to ±1

cycle. We identify 3 causes of the errors that persist after correction. 1) The algorithm sometimes

simply fails, like in Region 1 of the simulated example in Figure 5.10. Ideally, in these scenarios

the errors will not persist, as was the case in the Region 1 example. 2) The algorithm estimates

slip correctly, but at slightly different times compared to the truth reference, like in Region 5 from

the simulated example. We do not view these errors as a failure of the algorithm, but rather as

a byproduct of the way the truth reference is generated and the ambiguity in how scintillation

fluctuations are interpreted. 3) Similarly, sometimes phase fluctuations that are interpreted as slips

in the truth reference are neglected by the algorithm, like in Region 6 from the simulated example.

Since these types of cycle slips are not persistent, we do not consider it a failure if the algorithm
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does not identify them. It is difficult to discriminate the effects of these latter two causes of errors

from actual failures of the algorithm, but we expect that the results summarized in Figure 5.11

underestimate the actual performance of the algorithm. Overall, these results in simulations of

scintillation phase measurements suggest that, so long as the algorithm is properly tuned, it should

perform well on real scintillation measurements.

5.7.2 Real Data

5.7.2.1 Hong Kong

Here we discuss the results of applying the mitigation algorithm to the real scintillation

dataset from Hong Kong. First we assess results for triple-frequency measurements. Figures 5.12

and 5.13 contain panels that illustrate the results for the two windows of the dataset identified in

Figure 5.2. Similar to Figure 5.10, panels a and b show the C/N0 and phase for the three signals.

Panels c and d show the sparse float cycle slip amplitude estimates ∆z̃ and the the bias sequence

estimate ž, respectively. Panels e, f, and g show the IF, GIF, and GF phase combinations before

and after cycle slip correction. Just like the simulated example, we see correlated slip estimates

in the L2 and L5 signals, and relatively few slips in the L1 signal. Also, for the correlated L2/L5

slips, we see how the float estimate again detects these slips as occurring on the L1 signal. For

example, this behavior occurs in Region 3 of Window 1 or Region 5 of Window 2. The similarity

in behavior of the float and MAP cycle slip estimates between the simulated and real data is one

piece of evidence that the algorithm is behaving properly.

Since we have no truth reference with which to rigorously assess the performance, we turn

to phase combinations as another way to evaluate the results. Just like in the simulated example,

after correction the IF and GIF combinations remain flat throughout the duration of the window

and the GF combination is more smooth. If the algorithm does fail, it is likely to do so in regions

where these combinations show noisy or fluctuating behavior, as was the case in the simulated

example. For instance, Region 1 marked in Window 1 shows an instance where the IF, GIF, and
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Figure 5.10: Example of simulated triple-frequency scintillation data containing cycle slips. Panels a
and b show the C/N0 and phase for the three signals. Panel c shows the diffraction error containing
cycle slips along with a truth estimate of slip occurrence. Panel d shows the float estimates of the slip
amplitude sequences ∆z̃ obtained through the sparse estimation method. Panel e shows the MAP
estimate of slip bias sequences. Panels f, g, and h show the IF, GIF, and GF phase combinations
respectively, with gray and colored lines corresponding to the combinations obtained before (raw)
and after (corrected) subtracting off the MAP slip bias estimate ž.
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Figure 5.11: Distribution of phase error due to cycle slips before (raw) and after (corrected) sub-
tracting MAP cycle slip estimate. The distribution is generated from histograms of the phase
error over 100 simulations of scintillation measurements over 5-minute windows, with simulation
parameters corresponding to scenario 1.

GF all show a suspicious bump. During this time, the algorithm estimates a simultaneous 1-cycle

slip on all three signals, which is the most difficult cycle slip amplitude to discriminate against

the no-slip hypothesis. Another example is Region 4 marked in Window 2, where the GF shows

significant variation and the IF shows an increase in noisy fluctuations. The algorithm estimates

two slips on the L1 signal during this time, which is generally rare and difficult to identify, so it

is quite possible at least one of these was a mis-estimate. On the other hand, the GIF remains

quite flat throughout this period and overall the occurrences of slips in the MAP estimate are not

suspiciously abundant.

To more rigorously quantify this last statement, we can use the results from Chapter 2 where

we modeled cycle slip occurrence as a Poisson process and characterized the slip occurrence rate

for different scintillation conditions (using S4, τ , and C/N0 parameters). For each window of data,

Table 5.2 compares the predicted number of slips (±1-sigma) and the actual number of estimated

slips that occur on each signal. We see that for both windows, the number of estimated slips on

the L2 and L5 signals is within the 1-sigma bounds of the predicted number of slips. However,
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Window 1 Window 2

L1 L2 L5 L1 L2 L5

Predicted 1.6± 1.2 14.7± 3.8 18.6± 4.3 1.2± 1.1 11.8± 3.4 14.8± 3.9
Estimated 10 13 16 6 10 15

Table 5.2: Comparison of predicted number of slips based on results from Chapter 3 and the actual
number of estimated slips on each signal.

the number of slips estimated on the L1 signal is larger than the predicted number of slips in both

instances. There are a couple instances in Window 1 where the estimated L1 slips are close together

and cancel out, just like in the example from Region 3 of the simulated example in Figure 5.10.

Aside from this, it is possible that some of the L1 slip estimates are errors, e.g. the L1 slips in

Region 4.

It is interesting to compare the results for triple-frequency and dual-frequency estimation.

Figure 5.14 shows the results for estimating slips using only the L1 and L2 phase measurements.

The panels are similar to those shown in the triple-frequency examples, except for the fact that panel

f now shows the GF combination as there is no dual-frequency phase-only GIF combination. Just

like for the triple-frequency results, we see much smoother phase combinations after the correction

using the estimate slip bias. Comparing the slip bias estimates in panel d, with those from the

triple-frequency results in Figure 5.13, we see that the estimates are identical in the latter half of

the window. In the first half, however, there are two key discrepancies around 44970 and 45090

seconds, where for the dual-frequency results we see slips occurring on the L2 signal instead of the

L1 signal. Given that we saw an overabundance of L1 slips in the triple-frequency estimate, it

leads us to believe maybe some of the triple-frequency L1 slip estimates were erroneous. It further

suggests that maybe the priors for ∆z should not be uniform across different signals but instead

should be weighted to reflect the smaller probability of occurrence of L1 slips in comparison to L2

or L5. This will be an interesting topic for future investigation. Overall, despite the extra L1 slip

estimates, the algorithm appears to show good performance on the real scintillation datasets in

terms of consistency and smoothness in the slip-corrected phase combinations.
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Figure 5.12: Detection and estimation results for Window 1 of the real scintillation data set. Panels
a and b show the triple-frequency C/N0 and phase, respectively. Panel c shows the float estimates
of the slip amplitude sequences ∆z̃ obtained through the sparse estimation method. Panel d shows
the MAP estimate of slip bias sequences. Panels e, f, and g show the IF, GIF, and GF phase
combinations respectively, with gray and colored lines corresponding to the combinations obtained
before (raw) and after (corrected) subtracting off the MAP slip bias estimate ž.



137

Figure 5.13: Detection and estimation results for Window 2 of the real scintillation data set. Panels
and layout are the same as in Figure 5.12.
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Figure 5.14: Dual-frequency detection and estimation results for Window 2 of the Hong Kong
scintillation data set. Similar to Figure 5.12, panels a and b show the C/N0 and phase, respectively.
Panel c shows the float estimates of the slip amplitude sequences ∆z̃ obtained through the sparse
estimation method. Panel d shows the MAP estimate of slip bias sequences. Panels e and f show
the IF and GF phase combinations respectively.
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Units Ocean Reflection Mountaintop RO

C/N0 dB-Hz 22.00 20.00
σ2
G m2 20 .05

ρG s 20 12
σ2
I m2 1 0.001

ρI s 90 90
σ2
ǫ cycles2 0.75 0.2
λ 20 15

Table 5.3: Estimation window C/N0 and hyperparameter values for ocean reflection and mountain-
top RO examples.

5.7.2.2 Ocean Reflection

Given the topic that we set in Chapter 1, it is important that we demonstrate the algorithm’s

effectiveness for other types of harsh signal conditions than just diffractive scintillation. As such, we

applied the cycle slip mitigation algorithm to the ocean reflection dataset. When doing so, we need

to adjust the model hyperparameters for the new scenario to achieve the best performance. In this

case we manually tuned each parameter to achieve adequate performance and runtime. The values

we used are listed in Table 5.3. Figure 5.15 shows the results of applying the algorithm for the

ocean reflection dataset. Since we do not have as good a model for the non-dispersive component,

this time we see more variation in the IF phase combination and nearly completely flat behavior

in the GF phase combination. After around 65 seconds, the algorithm appears to perform quite

well based on the smooth results in the IF and GF combinations. Before that epoch, the algorithm

behavior appears to fail, however this period of the data most likely corresponds to a non-coherent

signal [64], and so we do not consider it to be an actual failure of the algorithm.

5.7.2.3 Mountaintop RO

Our final results are for the the mountaintop RO data that we introduced in Chapter 1

Section 1.4.2. In this case we consider measurements on only the L1 signal, which showed several

deep fades and had overall quite low C/N0 during the estimation window we chose. In this dataset,

the navigation bits have not been removed, and so the signal is actually afflicted with half-cycle
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Figure 5.15: Dual-frequency detection and estimation results for the GNSS-R ocean reflection
dataset. Similar to Figure 5.14, panels a and b show the C/N0 and phase, respectively. Panel c
shows the float estimates of the slip amplitude sequences ∆z̃ obtained through the sparse estimation
method. Panel d shows the MAP estimate of slip bias sequences. Panels e and f show the IF and
GF phase combinations respectively.
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instead of integer-cycle slips. To accommodate for this, as briefly mention in Section 4.2, we simply

adjust B to use 1/2 wavelengths. Again, we hand tune the covariance parameters (provided in

Table 5.3) to achieve decent results with reasonable runtime. Note that in the single-frequency

case, specification of both G and I phase components is somewhat redundant since the single-

frequency signal measurements cannot take advantage of the dispersive nature of the ionosphere

effect. Nevertheless, slips using a single frequency can still be estimated and the model does not

require any special modification. Figure 5.16 shows the results of applying the detection and

estimation procedures. In panel c, we see very rapid occurrence of detected slips over very short

spans of time. Panel d shows the estimated slip bias sequence that noticeably follows the phase

trend in the raw measurements, which is presumably due to cycle slips. Despite the very low C/N0

level, we are able to estimate slips in the single-frequency data because the phase components have

little variation. Panel e shows the corrected phase measurements, now showing much smoother

behavior. With only one signal frequency, it is difficult to assess the fidelity of the corrected phase.

One way to do this would be to compare the corrected phase with its expected variations due

to physical parameters, e.g. in this case due to tropospheric water vapor content. For instance,

the in [85] the cycle slip correction results for ocean-reflected signals are validated by comparing

corrected phase variations with sea-surface height variations obtained via an independent altimetry

experiment. Such validation is an interesting topic for future study.

5.8 Summary and Discussion

In this chapter, we presented a comprehensive approach for detecting and estimating cycle

slips. We introduced a novel method for batch cycle slip detection over a window of measurements,

and we assessed the performance of the approach by applying it to high-rate multi-frequency mea-

surements in both simulated and real data. The results of applying this method to simulated

scintillation data sets indicate that it can correctly estimate the most difficult-to-detect slip ampli-

tudes and that the MAP estimate can correctly identify at least 80% of the cycle slips. For the real

datasets, we applied the method for dual- and triple-frequency GPS measurements for the cases
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Figure 5.16: Single-frequency detection and estimation results for the Hawaii mountaintop RO
dataset. Similar to Figure 5.14, panels a and b show the C/N0 and phase, respectively. Panel c
shows the float estimates of the slip amplitude sequences ∆z̃ obtained through the sparse estimation
method. Panel d shows the MAP estimate of slip bias sequences.
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of diffractive ionosphere scintillation and weak ocean reflection. There is no pure truth reference

with which to validate results on the real scintillation measurements, however, the smoothing of

the corrected phase combinations suggests that the algorithm is effective. When the algorithm does

fail, it appears to be associated with estimations of L1 slips over simultaneous slips on L2 and L5.

While we mostly focused on ionosphere scintillation in our results, we intend for this work

to be applicable in a wide variety of harsh signal environments. GNSS remote sensing is ripe

with opportunity to apply this method, including semi-coherent ocean reflections used in GNSS-

R, or tropospheric scintillation effects on low-elevation and radio occultation signals. In addition

to remote-sensing applications, this work may also be useful for batch estimation of cycle slips

occurring in weak signals on dynamic platforms. A major part of the effort in this work was

devoted to identifying appropriate covariance hyperparameters for modeling phase components and

measurement noise. The key to generalizing this algorithm to other harsh signal scenarios is finding

appropriate hyperparameters, although the values we use in this work should be a good starting

point. We also made a number of stated and implicit assumptions about how to characterize the

phase components, such as our use of the Matérn kernel with ν = 3/2 and our characterization

of noise and unmodeled errors, which in this study was held constant over time. The approach

we presented can easily be adapted to incorporate a time-varying model for noise variance, which

may help improve mitigation capabilities under certain scenarios. It will be important to reassess

these assumptions and characterizations of the signal phase components and errors for these new

scenarios.



Chapter 6

Summary and Conclusion

In this dissertation, we explored the origin and nature of cycle slips in GNSS phase measure-

ments, with an emphasis on cycle slip occurrence under harsh signal conditions. This problem is

challenging because of 1) the occurrence of numerous consecutive cycle slips, 2) presence of large,

uncertain phase component variations, and/or 3) presence of excessive noise. In chapter 2, we

focused on characterization of cycle slips in simulations. We showed how the effects of phase tran-

sitions and noise can create many consecutive cycle slips, and we quantified the rate of this slip

occurrence for the case of diffractive ionosphere scintillation. In chapter 3, we took a closer look at

cycle slips in real multi-frequency phase measurements collected during scintillation events and we

provided a performance analysis of two algorithms designed to mitigate their occurrences. The first

of these algorithms used measurement combinations to detect and estimate cycle slips and yielded

a very high rate of false detection when applied to one of the scintillation datasets. The second

algorithm was a state-space sequential algorithm that made use of the signal C/N0 to adaptively

filter the phase measurements and detect cycle slips. While this method performed significantly

better than the method using phase combinations, it still introduced a large number of false cycle

slips into the resulting measurements. The filtering algorithm is of particular interest because it

had previously been applied with very good performance to scenarios with low signal C/N0. We

claim that the case of ionosphere diffraction, and any harsh signal conditions that contain phase

transitions, will be difficult for sequential algorithms to address. This claim stems from our char-

acterization of phase transitions in Chapter 2, where we saw how an “up-close” view could not
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necessarily reveal whether or not canonical fading corresponds to a cycle slip. Our conclusion from

these results was that effective cycle slip mitigation under harsh signal scenarios would require use

of an extended window of high-rate measurements when detecting and estimating slips.

In order to quantify how long a window and how high a sampling rate are necessary, in

Chapter 4 we introduce a general probabilistic model for estimating cycle slips in GNSS carrier

phase measurements. In particular, we modeled the non-dispersive and refractive ionosphere phase

components as stationary Gaussian processes. We discussed noise modeling and how to choose

covariance parameters. Then, we used our model to illustrate how window duration and sampling

rate impact false detection rates under 4 hypothetical scenarios, showing that we can greatly de-

crease false detection probabilities for a single slip when using 20 Hz (or faster) multi-frequency

measurements over at least 16 seconds. However, our characterization from chapters 2 and 3 demon-

strate that it is possible for multiple cycle slips to occur over such timescales. This led us into the

culminating problem from this dissertation: how to reliably detect and estimate the occurrence

of multiple cycle slips under harsh signal conditions. In Chapter 5, we provided our approach,

the steps of which we summarize as 1) compute the sparse float estimate, 2) use the sparse float

estimate to detect slip occurrences, 3) compute the reduced system model for the detected slips, 4)

search for the best cycle slip amplitudes. The results demonstrate that this algorithm is capable

of accurately detecting and estimating cycle slip occurrences in both simulated and real datasets,

including both single-, dual-, and triple-frequency measurements.

The approach we introduce has an advantage over other cycle slip mitigation techniques be-

cause it uses all the relevant measurements both before and after slip occurrences when estimating

their amplitudes. Our development and algorithms also allow for its use with high-rate measure-

ments and any number of signal frequencies. However, this power and flexibility come at a cost.

The algorithm is fairly computationally expensive compared to most other cycle slip algorithms.

One of the major challenges in this work was in finding ways to make the algorithm computationally

feasible for large windows of high-rate measurements without compromising its power and flexibil-

ity. Our use of stationary Gaussian processes, the L1-norm regularization optimization approach
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during detection, and our new approaches to searching for integer solutions in high dimensions

(SASOC, ASUM) were key elements to our success in overcoming this challenge. Also, unlike many

other mitigation strategies, the algorithm we present is designed for batch post-processing. Ex-

ploring how well the model principles from Chapter 4 can translate to sequential or near-real-time

processing will be an interesting topic for future study.

While our model and algorithms are powerful and perform well, we still made a number

of assumptions that are possibly too rigid or over-simplifying. One of these was our assumption

about noise modeling. We mentioned more sophisticated options for noise modeling in the case of

ionosphere scintillation, e.g. those in [73]. We expect that using a noise covariance that adapts based

on estimates of signal C/N0, similar to the cycle slip filtering algorithm [85] or many carrier tracking

approaches (c.f. [95], [73], [83]), could lead to better performance under certain circumstances. Also,

our modeling of the time series G(t) and I(t) relied on assumptions about the behavior of these

components. In particular, it will be valuable for future studies to more fully characterize when

they can adequately be modeled as stationary and what are appropriate covariance models. As

we discussed in Chapter 4, for the case of ionosphere scintillation, diffractive fluctuations can be

highly correlated. It would be interesting to see to what extent diffraction can be absorbed into

the refractive ionosphere phase component and how that affects its covariance structure.

Finally, while throughout this dissertation we heavily focused on the mitigation of the cycle

slips themselves, it is important to also consider the actual end-goal that motivated us to address

these cycle slips in the first place: obtaining accurate, slip-free phase measurements for our pre-

cision remote-sensing or navigation applications. Throughout our results section, we showed the

“smoothed” phase combinations obtained after applying a correction using the estimated cycle

slips, which shows some indication that we have removed the slip-induced measurement biases. It

will also be important for some applications to know when cycle slips were corrected, as well as any

potential statistics for the reliability of that correction. We presented limited results on the the-

oretical performance of the algorithm with an emphasis on ionosphere diffraction conditions since

those are the ones we can simulate. It will be valuable to further investigate algorithm performance
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under other harsh signal scenarios.
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Appendix A

Linear Combinations

Here we derive the analytical expressions for orthogonal IF, GF, and GIF combinations of

triple-frequency carrier phase measurements. The derivation stem from work originally done in

[13]. Recall that GF and IF combinations satisfy:

∑

k

ck = 0 GF (A.1)

∑

k

βkck = 0 IF (A.2)

Then the coefficients satisfying GF and IF constraints for triple-frequency can be found by taking

the cross product 1× β, where 1 = [1, 1, 1] and β = [β1, β2, β3]:

cGIF =















β2 − β3

β3 − β1

β1 − β2















(A.3)

Note, cGIF is defined by a linear subspace of R3 and so its GIF properties are preserved under

scalar multiplication. The IF and GF coefficients that are orthogonal to these GIF coefficients can
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then be found by taking 1× cGIF and β × cGIF:

cIF =















β2(β1 − β2)− β3(β3 − β1)

β3(β2 − β3)− β1(β1 − β2)

β1(β3 − β1)− β2(β2 − β3)















(A.4)

cGF =















2β1 − β2 − β3

2β2 − β3 − β1

2β3 − β1 − β2















(A.5)

(A.6)

Again, the properties of these coefficients are invariant under scalar multiplication.



Appendix B

Hyperparameter Estimation

We want to find a set of values for the covariance hyperparameters σ2
ǫ , σ2

I , and ρI that

generalize a large set of simulated scintillation measurements. To do this, we optimize the average

log-likelihood of measurements over a set of simulations. In particular, we perform 50 5-minute

simulations of scintillation measurements. From each set of simulated measurements we subtract

off the truth reference of slip occurrences to obtain measurements without cycle slips. We consider

a grid of parameter values for each of σ2
ǫ , σ

2
I , and ρI and evaluate the log of Equation 4.19 for a

model Qy:

2 log p(y|∆ztrue) = − log |Qy| − (y −B∆ztrue)
T
Q−1

y (y −B∆ztrue) + C (B.1)

Here, C is constant with respect to the hyperparameter values. Computing the log-determinant

of Qy is non-trivial, and we apply the approximation algorithm from [100]. We choose the values

that minimize the average log-likelihood over all 50 simulations. Figure B.1 shows a slice of the

optimization landscape corresponding to σǫ and ρI for Window 1. The location corresponding to our

chosen hyperparameter values are indicated with a white dot. The mostly uni-modal optimization

landscape indicates that the chosen parameters should be valid for performing GP regression on

this type of data.
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Figure B.1: Grid of average log-likelihood for corrected simulated scintillation measurements cor-
responding to Window 1 parameters. The white dot indicates the location for parameter values
that minimize this average log-likelihood.



Appendix C

Algebra for MAP and ILS Equivalence

In Chapter 4, we show the equivalence between MAP and ILS estimates assuming a uniform

(non-informative) prior for ∆z. To show this, we used the following proportionality with respect

to argument ∆zi:

N (y;B∆zi,Qy) ∝ N (∆zi;µ∆ẑ,Q∆ẑ) (C.1)

For the sake of completeness, here we derive this proportionality in more detail. First we recall the

definitions for Q∆ẑ and µ∆ẑ, which are provided in Equations 4.31 and 4.32 and which we provide

here for convenience:

Q∆ẑ =
(

BTQ−1
y B

)−1
(C.2)

µ∆ẑ = Q∆ẑB
TQ−1

y y (C.3)

Now consider the exponent for the expression N (y;B∆zi,Qy):

(y −B∆zi)
T
Q−1

y (y −B∆zi) (C.4)

=yTQ−1
y y − 2∆zTi B

TQ−1
y y +∆zTi B

TQ−1
y B∆zi (C.5)

=
(

∆zi −
(

BTQ−1
y B

)−1
BTQ−1

y y
)T
(

BTQ−1
y B

)

(

∆zi −
(

BTQ−1
y B

)−1
BTQ−1

y y
)

(C.6)

=
(

∆zi −Q∆ẑB
TQ−1

y y
)T

Q−1
∆ẑ

(

∆zi −Q∆ẑB
TQ−1

y y
)

(C.7)

= (∆zi − µ∆ẑ)
T
Q−1

∆ẑ
(∆zi − µ∆ẑ) (C.8)

It follows that the exponents of the two densities are equal when evaluated at appropriate inputs.

Therefore the terms in Equation C.1 are proportional.
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